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ABSTRACT 

0 

0 

0 

Acoustic propagation in an atmosphere with a specific form of a temperature 

profile has been investigated by analytical means. The temperature profile used is 

representative of an actual atmospheric profile and contains three free parameters. 

Both lapse and inversion cases have been considered. Although ray solution have 

been considered the primary emphasis has been on solutions of the acoustic wave 

equation with point source where the sound speed vanes with height above the ground 

corresponding to the assumed temperature profile. The method used to obtain the 

solution of the wave equation is based on Hankel transformation of the wave equation, 

approximate solution of the transformed equation for wavelength small compared ?c ?he 

scale of the temperature (or sound speed) profile, and approximate or numerical 

inversion of the Hankel transformed solution. The solution display the characteristics 

found in expenmental data but extensive comparison between the models and 

experimental data has not been carried out. 
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Although the propagation of acoustic signals through the atmosphere has been 

studied for many years, and most atmospheric effects are understood in the qualitative 

sense, quantitative modeling of most of these effects has become an area of interest 

only recently. The dominant effect occurring in atmospheric propagation is the 

spreading of acoustic energy associated with a wave propagating in three dimensions 

over an ever increasing area, the well known spherical spreading effect, which occurs 

in an isothermal, unbounded atmosphere. In addition to this, acoustic waves are 

absorbed by the atmosphere, reflected and absorbed at the ground surface, scattered 

by turbulence, and refracted by both wind and temperature gradients. 

This report summarizes a project to develop models for the propagation of 

acoustic signals from a point source above a finite impedance ground surface in the 

presence of temperature gradients in the atmosphere. The situation of interest is the 

case of sound from a source located within a few meters of the ground propagating to a 
receiver located within a few meters of the ground through the temperature gradient 

that commonly occurs just above the ground surface. Best[l], Giegerf21, and 

Reynolds[3] all discuss the temperature gradient in this region. Within one to two 

meters of the ground the temperature generally goes through a diurnal cycle with a 

lapse condition, temperature decreasing with height, occurring in the afternoon and an 

inversion condition, temperature increasing with height, at night, see Figure 1 .l. 

Shortly after sunrise and sunset the atmosphere goes through a nearly isothermal 

period when the transition from lapse to inversion or inversion to lapse condition is 

under way. This simple picture of the very complex atmospheric dynamics near the 

ground can be upset by significant winds which increase the mixing near the ground 

surface and tend to lead to a more isothermal situation, or to an overcast which can 
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prevent a strong lapse condition from developing by blocking the insolation or prevent 

an inversion from occurring by blocking the radiation from the ground to the night sky. 

bY 

References 1,2 and 3 all discuss the classic logarithmic temperature profile given 

z 
T=T,In(-) 

zo 

(1 -1 1 
which is based on empirical results. This result, although fitting the experimental data 

well, certainly is not reasonable either for heights very near the ground or very far 

above the ground. In addition, logarithmic !unc?lnns zre n,ener=!!y mere diffimtt to deal 

with in an analysis then are algebraic functions. For this latter reason the profile used 

in this study is 

AT T = T  + - l+az 

This form of the temperature profile is shown in Figure 1.2 along with some 

temperature data obtained by Butterworth[4]. The agreement between the data and 

the assumed function fitted to this data is excellent. Also as compared to (1 .l) the e 
physical meaning of the parameters in (1.2), T,, AT, and a, are clear. The assumed 

temperature profile asymptotically approaches the temperature T, high above the 

ground. At the ground the temperature is T, + AT, thus the change in temperature e 

between the ground and far about the ground is AT. The derivative of temperature 
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with respect to height evaluated at the ground surface is - a AT. Thus llu is the scale 

over which the temperature change AT occurs. For example at a height z = l/a 

one-half of the total temperature change AT has occurred. The temperature profile of 

(1.2) can be used to represent either a lapse or inversion condition. For a lapse 

condition the parameter AT is positive and for an inversion it is negative. 

with a sound speed varying with height and with a point source term, 

The equation governing the wave motion is the simple acoustic wave equation 

At the ground surface, z = 0, a normal impedance boundary condition 
0 

is assumed. High above the ground, t + -, only outgoing waves are permitted, a 

radiation condition. At the source height, z = s, the pressure field is to be continuous, 

and to satisfy the conditions implied by (1.3). 

lapse and inversion cases for the assumed temperature gradient, (1.2). This both 

yields a quantitative understanding of the propagation phenomena, and plays an 

integral part in understanding the modeling that follows. The model for the lapse 

condition is developed in Section 3 and the inversion model is described in Section 4. 

Section 2 contains a discussion of the acoustic rays that characterize both the 
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Section 5 contains a discussion of the conclusions developed during the project. 



0 

f - .  

2.0 ACOUS TIC RAYS 

0 

Acoustic ray tracing is a relatively simple procedure for an axisymmetric case 

which yields a great deal of qualitative information about a given propagation situation. 

Only a brief discussion is given here. More detail is given in [5]. For an horizontally 

stratified atmosphere the acoustic rays may be determined from an acoustic form of 

Snell's law 

(2.1 1 
where the source is located at the height s. Here e@) is the angle between a ray and 

the horizontal at the height z, see Figure 2.1. Thus the right hand side of (2.1) is a 

constant for a ray emitted from the source at an initial angle e(s). Using (1.2) to obtain 

1 2 2 AT 1 a ( z ) = a  ( 1 + -  
T, ( 1  +az) 

(2.2) 
which describes the sound speed as a function of height, the slope of a ray initially 

emitted from the source at an angle e(s) is determined from (2.1) to be given by 

-- 
dr C z + D  

5 
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A = a [ l  +a+--( AT 1 + ~ S ) C O S  2 0 ( ~ ) ]  
T 
oo 

B = [ l  +as+--( AT 1 +as)( 1 +- )COS AT 2 0 ( ~ ) ]  
T 
oo 

T 
oo 

and e 

0 

0 

AT 2 

T D = ( ~ + - ) ( ~ + ~ s ) C O S ~ ( S )  
oo 

(2.7) 
Equation (2.3) can be integrated to obtain the ray paths. Different results are obtained 

in the lapse and inversion cases and these will be considered separately in the next 

two sections. 

2.1 Lapse Case 
e 

In the lapse case the quantity A is positive and integrating (2.3) to obtain the rays 
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yields four different cases. For rays going upward from the source (using the positive 

sign in (2.3)) 

e 

0 

e 

a 

e 

r = F(Z, e(s)) - F(S, qs)) 

(2.6) 
for rays going downward initially from the source (using the negative sign) 

r = F(s, e(s)) - F(z, 0(s)) 

(2.7) 
for rays that were initially going downward but have been reflected upward at the 

ground (using the positive sign and (2.7)) 

r = F(Z, e(s)) + F(S, e(q) - 2 F(O, qs)) 

(2.8) 
and for rays that initially were going downward and were refracted upward before 

reaching the ground (again using the positive sign and (2.7)) 

The function F(z, e(s)) is given by 

(2.1 0) 
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where 
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(2.1 1) 

and 

@=p=T 
I A I ( C z + D )  

(2.1 2) 

The absolute value of A in (2.1 2) is immaterial in the lapse case where A is always 

positive but significant in the case of an inversion where A may change sign. a I -  

The rays are identified by the parameter e(s), the initial angle at which the ray 

leaves the source. Thus a ray initially propagating downward and identified by a 

particular value of e(s) will either be reflected upward at the ground or refracted upward 

at a turning point. In either case the reflected or reflected ray will be identified by the 

0 

same value of 6(s) as the initial ray. Figure 2.2 is an example of the rays calculated 

from (2.6) to (2.9). 

Setting 8(z) = 0 in (2.3) yields an expression for the height at which an initially 

downward propagating ray becomes horizontal, the turning point, as 

a 

a .  
i,. 

e 

a 



e 

a (2.1 3) 

0 

a 

Solving this expression for Cos e(s) yields 

AT ' (1 + a z w ) (  1 +as+-) I T 
00 

(l+as)(l+a4 +-) AT 
P T  

00 

cos 9(s) = 

(2.14) 
... w l ~ k ~ ~  L .I.. identifies the ray having a turning point at a neight qp. The ray that grazes the 

ground and is the boundary between reflected and refracted rays can be found by 

setting ztp = 0 in (2.1 4). The ray that divides the initially upward and downward 

propagating rays is identified by e(s) = 0. 

For the ray that grazes the ground, and is identified by the value of 9(s) defined by 

(2.1 4) with ztp = 0, the function F(0, e(s)) = 0 and thus this ray is defined by either (2.8) 

or (2.9). Similarly for e(s) = 0 the ray can either be obtained from (2.6) or (2.9) since on 

this ray F(s, 0) = 0. At a turning point F(+ e(s)) = 0 when e(s) is given by (2.14). 

(2.9) and at a fixed height z is the maximum possible value of r for rays with turning 

points below that height. Thus the ray tangent to the shadow boundary or caustic at the 

height z is identified by solving the equation 

The shadow boundary is more difficult to locate. It is bounded by refracted rays 

a 
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e 

(2.1 5) 
for 0(s) and then using that value in (2.9) to determine the location. The derivative in 

(2.15) can be obtained from 

(2.16) 
where 

cos 8(s) ?=J- 1 +az+- 

(2.1 7) 
Due to the complexity of this expression an analytic solution is not possible and either 

a numerical solution of (2.1 5) must be obtained or the approximate relations given in 

[q must be used. 

c 10 



2.2 Inversion Case 

e 

As in the lapse case several different types of rays occur in the inversion case. 

Integrating (2.3) with AT/TOo negative also yields three different forms for the function 

which determines the rays depending upon whether the quantity A given in (2.4) is 

positive, negative or zero. The meaning of these three cases is discussed below. For 

rays that are initially angled upward (using the positive sign in (2.3)) 

a 
(2.1 8 )  

where i = 1,2, or 3 depending on the initial angle of the ray leaving the source. Rays 

with i =1 leave the source a sufficiently large angle upward so they do not have a 

turning point and are never refracted downward. The case i =2 corresponds to the 

limiting ray that has a turning point at infinite height. Rays described with i = 3 have 

turning points at finite height and are alternately refracted downward and reflected 

upward at the ground. These are the rays trapped by the inversion. 

Rays that initially are angled downward are given by (using the negative sign in 

(2-3)) 

r = Fi(s, e@)) - Fi(z, e@)) 

(2.19) 

for all three cases before they are reflected upward at the ground. The reflected 

waves are given by (using the positive sign) 

11 



(2.20) 

in all three cases. Note that after reflection the i = 3 rays are refracted downward and 

reflected upward from the ground repeatedly. In the case of these i = 3 type rays four 

more forms exist. For rays that initially were angled upward (using the negative sign) 

0 

0 

i i  
u- 

(2.21) 

after they have been refracted downward and have been reflected n times from the 

ground. For rays that initially were angled upward and have been reflected upward n 

times from the ground and have not been refracted downward following that reflection 

f- = F3(z, e(@) - F3(s, e(s)) -2 n F3(0, W)) 
(2.22) 

Thus an i = 3 type ray leaving the source upward is first described by (2.1 8) or (2.22) 

with n = 0 before it is refracted downward through a turning point. After it is refracted 

downward the first time it is described by (2.21) with n = 0. Following its first reflection 

from the ground it is given by (2.22) with n = 1, then by (2.21) with n =1 between 

refraction through a turning point and reflection, then (2.22) with n =2, etc. 

For rays that initially were angled downward (using the positive sign) 

r = F,(z, e(s)) + F~(s, e(s)) -2 n ~ ~ ( 0 ,  qs)) 

(2.23) 

after they have been reflected upward n times from the ground. For rays that were 

12 



initially angled downward (using the negative sign) 

r = - F3(z, e(s)) + 5(s ,  e(s)) -2 n F~(o, e(s)) 

(2.24) 
after they have been reflected n times from the ground and have been refracted 

downward through a turning point. 

Thus an i = 3 ray that is initially angled downward at the source will first be 

described by (2.19) or (2.24) with n = 0 until it reflects from the ground, then by (2.20) or 

(2.23) with n = 1 between reflection and refraction through a turning point. Following 

the turning point and before the second reflection (2.24) with n = 1. Then by (2.23) with 

!? = 2, 8tC. 

The functions Fi are given by 

a 

0 

,- * 

i !  
L . 

(2.25) 

fori = 1, 

(2.26) 
for i = 2, and 
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a (2.27) 

for i = 3. As discussed above, the i = 1 case occurs for A greater then zero or for 

Cos e(s) c Cos 8 (8 > 0) where 

I 1 +as+- 

0 

0 

0 

0 

0 _. - 
I 

m cOse=\I l + a s  

(2.28) 

Rays with values of the initial angle, e(s), greater the value of the angle given by (2.28) 

then escape from the trapping effect of the inversion. The ray with A equal to zero or 

e(s) = 0 is the limiting ray that has its turning point at infinity (the i = 2 case), while the 

rays with i =3 correspond to negative values of A or Cos e(s) > Cos@ (e(s) < e), and 

are the rays trapped by the ground. Rays with initial downward slopes can be divided 

in a similar manner but in all cases at least one reflection occurs before the ray 

escapes the trapping effect of the inversion, is the limiting case, or becomes trapped by 

the inversion. 

Figure 2.3 is an example of the rays calculated from the above equations for the 

case of an inversion. 
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3.0 LAPSE C ASE SOLU TION 

The solution of the problem posed by equations (1.2) to (1.4) in case of AT > 0, a 

lapse condition, was undertaken first. The general approach used in both the lapse 

and inversion cases was to first separated out a sinusoidal time dependence from the 

pressure, and then to Hankel transform the governing equations with respect to the 

horizontal distance from the source, r, to reduce the number of independent variables 

to one, the vertical height, z. This reduces the governing equation for the transformed 

independent variable to an ordinary differential equation for which an approximate 

solution can be obtained. This solution contains the Hankel transform variable, p, 
which replaced the horizontal distance in the transformed governing equation. The 

transformed solution must then be inverse transformed to return to physical space. 

Because of the complexity of the solution this inverse transform can not be carried out 

exactly and either an approximate inversion must be used or the inversion must be 

carried out numerically. Both approaches were used in the lapse case. In both of 

these approaches it is necessary to to interpret the Hankel transform variable as a 
complex variable and to continue the solutions off the real axis for the transform 

variable. This is not an intuitive process as the physical interpretation of the transform 

variable is lost off the real axis. This process will be discussed in detail below. 

With the solution obtained for complex values of the transform variable attention 

will be turned to the inversion of the transformed solution. The methods used are the 

classical saddle point approach and a Fast Fourier Transform (FFT) based numerical 

method. These methods are describe in detail elsewhere and will be only described 

briefly here. Finally the results of these approaches will be described. 

15 



3.1 Transformation and approximate solution 

e 

0 

a 

0 

( - !  ._ 

The time dependence in the governing equation and boundary conditions, 

equation (1.3) and (1.4) can be removed by assuming 

iwt - 
p(z, r, t) = e G(z, r) 

(3.1 1 
The Hankel transform or twodimension Fourier transform for an axisymmetric function 

can be defined [6] as 

and the inverse transform as 

(3-3) 
The use of transform methods in solving partial differential equations arises from the 

fact that an appropriate transform will convert a particular type of derivatives into an 

algebraic term expressed in terms of the transform variable (p in (3.2) and (3.3)) in 

place of the original physical independent variable (r in (3.2) and (3.3)). Thus the 

number of independent variables in the partial differential equation will be reduced by 

one and the transform variable acts only as a parameter in the transformed solution. In 

16 
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the case of Hankel transforms the radial dependence in the Laplacian operator 

expressed in cylindrical coordinates for a axisymmetric function is converted to an 

algebraic term, see [6] for more details. Applying (3.2) to (1.3) leads to 

- p 2 ]  G = - - 6(z-s) 1 +az 

1 +at+- AT 21c 
T 
0 

(3.4) 
The term on the right hand side represents the source. The homogeneous form of this 

equation would have a solution with an oscillating behavior if the term in square 

brackets was positive and an exponehiiai behavior if it was negative. Thus the 

transition occurs when the term is zero or 

(3.5) 
Notice that if 

cos 9(s) 
1 +as+- 

(3.6) 
then equations (3.5) and (2.1 4) are very similar and we can interpret (3.5) as giving the 

value of p that causes the turning point (the location of the transition from oscillatory to 

17 



exponential behavior as well as a horizontal ray) to be located at the height z. But (3.6) 

remains to be be interpreted. From (2.1) and (2.2), however, one finds that P is equal to 

(ai&) times the cosine of the angle that a ray, which was initially at an angle e(s), 

makes in the limit as height tends to infinity. Thus just as we have used e(s) to identify 

e 

0 

e 

a 

a 

a ray we can also use the Hankel transform variable P. This discussion emphasizes 

the close relationship between the model being developed and the ray description. 

These parallels will be also be pointed out below. 

If height is nondimensionalized in (3.4) using the scale of the temperature 

gradient, a, a uniformly valid approximate solution to the resulting equation can be 

obtained, using the method presented by Nayfah [A, for large values of o/(aopa> as 

(3.7) 
where 

3 i 

v 00 

e 
i 

- 18 

e 



0 

e 

0 

a 
- ( - P )  

1 +az 

1 +az+- AT 0 

T 
0 

2 J 0 

a= 

(3.10) 

and 

(3.1 1) 

The modified Hankel functions h, and h, are defined in [8] by 

_ .  19  
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(3.12) 

and 

a 

a 

a 

a 

a 

e 
i 

(3.1 3) 

A and B are constants that have to be determined. This solution is rather complex and 

is expressed in terms of unfamiliar functions. Several important features of this solution 

need to be discussed to understand it. 

The functions h&) and h2(Q have a complicated behavior [SI. For real values of 

the argument both hl and h2 yield a complex results which is oscillatory with an 

algebraic decay of the amplitude for increasing magnitude of the argument. The 

function hl can be shown to represent downward propagating waves (for eid as used 

here) and h2 upward propagating waves. The oscillatory behavior also occurs for hl 

when the phase of the argument is equal to 2d3 and for h, when the phase of the 

argument is -2d3. When the phase of the argument is d3, hl decays exponentially 

and h2 grows exponentially. When the phase is 4 3 ,  h2 decays exponentially and hl 

grows exponentially. 

The solution of the point source problem is closely related to the plane wave 

20 
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0 

problem discussed in [9]. In wave problems where transforms have been used the 

inverse transform can generally be interpreted as a superposition of plane waves over 

a range of angles. In the case of the Hankel transforms used here the limits of 

integration on p are from zero to infinity and p can be interpreted as a/& Cos 8, where 

8- is the angle between a ray and the horizontal in the limit of height tending to infinity 

as given in (3.6). Thus a value of p of zero corresponds to a ray which is propagating 

vertically upward at infinite height, a value of p of o/a,corresponds to a horizontal ray 

e at infinite height, and a value of j3 of o/a, {[ 1 + OIL ] / [ 1 + az + AT/T, ]}1’2 corresponds to 

a ray with imaginary slope at infinity such that its ?urnIng pein? @Int of horizontal slope) 
is located at the height z. Based on this description the waves group themselves into 

several different forms. 0 

The first group, 0 I p I Po = o/a, { 1 / [ 1 + AT/TJ1Q, are waves with their turning 

points at or below the ground surface and thus are actually reflected at the surface. 

e 

e 

e 

e .  
! 

These waves plus their reflections constitute the first group. The wave with p = Po 
grazes the surface and is the limiting ray between the reflected and refracted rays. The 

second group, Po I P I f3, = o/a, {[ 1 + (xz J / [ 1 + OIZ + AT/T= ]}la, are waves with a 

turning point above the ground and below the observer height z. The waves in this 

group consist of those leaving the source in the range of angles described by (3.6) and 

their continuation after they have been refracted upward. The third group has p, 5 p S 

f3, = {[ 1 + as ] / [ 1 + as + AT/TJ}l&. These waves have their turning point above 

the observer and below the source. At the observers location these waves should yield 
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a 

0 

e 

a exponentially decaying solution. The waves in this group consist of those leaving the 

source in the appropriate range of angles and their continuation following refraction 

upward. These three groups of rays can all be seen in a ray diagram for a point source 

and all initially are propagating downward from the source. In addition there are waves 

propagating upward initially. These are in the range 0 5 j3 I p, but differ from the first 

groups in that they do not originate as downward propagating waves that are reflected 

or refracted upward. Thus the "reflection" coefficient is missing from these waves. 

source, there are several types that are necessary for the superposition given by (3.3) 

In addition to the above groups that can be seen in a wave diagram for a point 

where j3 ranges from zero to infinity, but do not occur in a ray diagram for a point 

source. Group five consists has ps S j3 I a/&, these waves have the turning point 

above the source. In addition there are waves with 01% < j3, these have no physical 

interpretation and correspond to complex angles at infinity. 

With these concepts let us proceed to the mathematical solution to the problem. 

The function g3n given in (3.8) contains four branch points, two at j3 = f pz and two at p 

= * a/&. The negative branch points are not significant and will not be discussed. On 

the real p axis, for 0 5 p pz, g3/*(z, p) is real. For pz < j3 < &a, g3"(z,p) is positive and 

imaginary, and for p > a/& gm(z,p) has a phase of -n at p = &a, and tends to a 

phase of -d2 as p tends toward infinity. This is shown in Figure 3.1. The branch line 

for g(z,j3) = ( 93n(z,p))m can be chosen to be on the line where the phase of g3Q(z,j3) is 

-IC. This line extends from the first branch point at pz to the second at da,and 
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encloses a small region above the positive real axis, see Figure 3.2. The branches 

chosen for g(z,p) yield a phase of zero for 0 s p < pZ, d 3  for pZ < f3 < a/&, and varying 

from -2d3 to 4 3  for p > a/&. 

Now by considering three cases the various forms of the solution can be 

obtained. These are shown in Figure 3.3. The first case is a wave with the turning 

point below the surface, 0 5 p I Po. The second has the turning point below the source 

but above the surface, Po I p 5 p,. In this case if the receiver is below the turning point 

then p > Pz, if it is above the turning point then p < pz. The third case has ps I p I cola, 

and the turning point is above the sobice. Again if the turning point is above the 

receiver then p > pz, if the receiver is above the turning point then p < pz. Note that 

these waves do not appear in a point source ray diagram but are needed to complete 

the solution. 

The solutions corresponding to the cases given above require the determination 

of the constants in (3.7). To do this a set of conditions are required. As result of the 

source terms in (3.4) the solutions separate into at least two forms, one for the region 

below the source and one above. The radiation condition, requiring outgoing waves in 

the limit as height tends to infinity, requires A to be zero above the turning point for 

z > s. At the source height, z = s, the solution must be continuous 

lim G(z,P) = lim G(z,p) 
z+s+ 2-N. 

(3.1 4) 

and must satisfy 

f -  23 



0 

0 

lim [-I aG - lim [-I = q  =- 
zjs. az zjs+az *a 

0 

0 

0 

which is c,,ainec 

(3.1 5) 

by integrating (3.4) from z = s - E to z = s + E and taking the limit E+O. 

At a turning point continuity is required, 

lim G(z,P) = lim G(z,P) 
Z+Z@ - Z+Z@ + 

(3.16) 
At the ground surface, z = 0, the required condition is the normal impedance condition 

(1.4) which can now be expressed as 

i Z  aG G=- - 
op az 

0 

(3.1 7) 
Using these conditions, equation (3.4), and the physical situations presented in 

Figure 3.2 the following solutions can be obtained. For z > s 

(3.1 8) 
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a 

0 

a 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

a 
25  
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0 

(3.24) 

(3.25) 

(3.25) 

(3.26) 

(3.27) 
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and 
(3.28) 

.1L 
-I- 

6 
e 

R, = .I( 

e 

l- 
6 e -iR, 

(3.29) 

The solutions obtained above are for real values of p, but as discussed above p 
must be interpreted as a complex variable. The boundaries between solutions off the 

real axis must be chosen as the branch lines used for calculating the function g(z,p), 

g(s,p) and g(0,p) from g3Q(z,p), etc. as were discussed above. On crossing these 

branch lines it should be noted that the phase of g(z,P), g(s,p) and g(0,p) 

discontinuously jumps from -2d3 to 2d3 and the phase of g,(z,p), g,(s,p) and g,(O,p) 

increases by -2d3 (since it contains the root of g in the denominator). 

Reference'(81 presents some results for the modified Hankel functions that are 

useful for this type of behavior: 
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(3.30) 
and 

(3.31) 
Using these relations the solution as given by equation (3.18) to (3.25) can be rewritten 

and the regions of validity determined. For z > s these are 

(3.34) 

in region C 
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(3.35) 

(3.36) 
in region E 
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(3.37) 

(3.38) 

(3.39) 



e 

0 

* 

e 

e 

in region H. To obtain these results it is necessary to recognize that 

(3.40) 

From these results and the description of the behavior of the function g(z,J3) (and 

therefore q) at the branch lines it should be clear that the solution is continuous at the 

branch lines even with g(z,P) being discontinuous. This transformed solution must 

now be inverted. 
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3.2 Lapse Results 

Two methods were used to approximately invert the Hankel transform contour 

integration which lead to the saddle point method in the insonified region of physical 

space and a FFT based numerical method. Neither of these methods will be described 

in detail as the basic method is well known in both cases and the specific application 

has been described in detail elsewhere. 

Both of these approaches are based on the concept that although the inversion 

integral (3.3) is defined as being carried out along the real axis, the residue theorem of 

complex variables [lo] allows the path of integration to be changed provided that there 

are no poles of the integrand between the original and modified ps?!hs. tf ples exist 

then additional terms must be included with the integral along the modified path. In the 

case of an isothermal atmosphere the additional term due to the pole leads to the 

surface wave term. In the lapse case the only possible pole is the due to the 

denominator of the term multiplying the upward going wave (the reflection coefficient in 

the case where a reflection occurs) being equal to zero. These case has not been 

completely examined but in the limit of AT equal to zero it reproduces the surface wave 

term. Thus one clearly expects to see a similar behavior in the case of weak lapse 

condition. This surface wave like-behavior has not been investigated beyond the point 

described above and has not been included in the results given below. 

3.2.1 Contour integration-Saddle Point Method 

Integrals of the form 

31 



0 

(3.41 ) 

be approximately evaluated by the saddle point method if the path of integration C 

is such that the ends of the path do not significantly contribute to the integral, { is a 

large parameter, and f(p) has a point where the first derivative is zero. Complex 

vm'able theory indicates that a function can not have maximum in the region where it is 

analytic and a point where its first derivative is zero must be a saddle point (1 01. At a 

saddle point if the path of integration follows the line of constant real pari of f(p) then 

the imaginary part f(p) either increases or decrmses a t  a maximum rate. If the path of 

integration follows the line of constant imaginary part of f(p) that passes through the 

saddle point then the real part of f(p) increases or decreases at a maximum rate. If we 

choose to follow a line of constant real part of f(p) through the saddle point in the 

direction such that the imaginary part increases at the maximum rate then the 

magnitude of the integrand decrease rapidly as we move away from the saddle point. If 

6 is large then the only significant pari of the integral is near the saddle point and the 

integral c a n  be approximated by using the first two non-zero terms in the Taylor series 

for f(j3) yielding the well known results given in 111). 

exist then an approximate integration can be carried out as described in detail by Ma 

This method works well when a saddle point exists. However when one does not 

v21. 
To apply this method to the integrals given by (3.3) with (3.32) to (3.39) both the 
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Hankel functions and the modified Hankel functions must be replaced by their 

asymptotic expansions and the integral regrouped to extend from negative infinity to 

positive infinity. When this is done the result contains twenty terms since the integrand 

is different between in the various regions in f3-space and in each part of the G function 

contains two terms. Thus writing out only the terms of interest for z > s yields 

+ ... 

Bo 

+ ... 
(3.42) 

-. 
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and for z< s 

BO 

+ ... 

0 

0 

.- ' 

0 

+ ... 

(3.43) 

To find the saddle points the arguement of of exponential term must be differentiated 

with respect to P and set equal to zero. On differentiating one finds 
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(3.44) 

where F(z,B(s)) is the function defined in (2.10) and used to describe the rays. 

Differentiating the arguments of the exponentials then yields equations (2.6) to (2.9), 

the equations defining the rays. Thus the saddle points associated with a particular 

point in physical space (in the insonified region) correspond to the values of p (or e(s) 
where the two are related by (3.6)) that defines the two rays passing through the point 

in physical space. Just as the rays were interpreted as upward-going-direct waves, 

refracted waves, etc. the terms in (3.42) and (3.43) also have the same interpretations. 

Determination of the saddle point values then first requires determination of the types of 

waves present at a particular physical location and then solution of the appropriate two 
of equations (2.6) to (2.9). Once the location of the saddle point has been determined 

the classical results may be applied. A computer program for carrying out this 

procedure and the resulting equations to approximate the inversion integral have been 

given in detail by Cheng [13] and will not be repeated here. A typical result is shown in 

Figure 3.5. 

As the physical location of the receiver moves into the acoustic shadow real 

values of p or e(s) cease to exist. Ma [12] has suggested an approximate approach 

which is also based on contour integration. In this approach the inversion integral 

between Pz or p, and &a, is carried out numerically and the remainder of the integral 

extending from negative infinity and to positive infinity are carried out in a manner 

similar to the saddle point method. The integral carried out numerically physically 
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represents the contributions of the exponentially decaying disturbances due to waves 

with turning points above the receiver. Ma [12] also incorporated into his program 

Cheng's saddle point method for the insonified region with some changes. A typical 

result is shown in Figure 3.6. 

Both of these methods suffer from discontinuities as the receiver passes from a 
region where the receiver senses a direct and a reflected wave to one where a direct 

and a refracted wave would occur. This results not from the transformed solution which 

is continuous, but from the large argument approximation that must be made to obtain 

the saddle point form (3.41) and from the fact that the argument becomes zero at most 

of the boundaries. As a result of these intrinsic problems with the saddle point method 

a numerical approach was then applied. 

The saddle point method has the appeal of a physical interpretation of the 

mathematical steps and results. A purely numerical method loses that interpretation 

and the physical insight that comes from it. 

3.2.2 Numerical Integration Method 

The numerical approach used was developed by Richards and Attenborough [14] 

and was applied to the present case by Lloyd [15]. The method approximates the 
inversion integral by using a Fast Fourier Transform (FFT) algorithm. To obtain an 
integral suitable for the use of the FFT algorithm the Bessel function containing the 

horizontal distance dependence must be approximated by its asymptotic expansion. 

Three other modifications are then carried out. First, the integration path is modified to 

be above the real axis (Richards and Attenborough's original approach was to 

integrate below the axis but they also assumed e-ia.), this avoids the discontinuities at 
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a 
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the branch points but requires integration up the imaginary axis. Second, the integrand 

is modified to make the integral along the imaginary axis zero, but, as claimed by 

Richards and Attenborough, to not change the result. Finally an approximate term is 

added to account for the finite upper limit and to approximate the integral to infinity. 

This approach is described in detail by Lloyd 11 51 and Figure 3.7 is a typical 

result. Disadvantages of this approach are the large amount of computer time required 

and that a entire horizontal profile must be obtained at each receiver height. Thus to 

obtain a vertical profile many time consuming computer runs must be made and one 

point out of several thousand points is actually used from each run. This approach 

clearly does not contain the discontinuities present in the saddle point method. Figure 

3.8 compares the saddle point method and the purely nurnerhi method. The 

agreement is excellent in the insonified region with the exception of the region very 

near the shadow boundary. The agreement is good in the initial sound level decrease 

as the shadow boundary is crossed but the saturation region deep in the shadow is not 

the same for the two methods. 

The numerical method often results in oscillations in the sound level at large 

distances from the source, this appears to be an artifact of the numerical inversion 

method and is dependent on the parameters of the inversion scheme. Also as very 

large distances are approached the calculated sound level often increases this is 

clearly due to the numerical inversion method. These points are further discussed by 

Lloyd (1 51 and a listing of Lloyd's program is given in Appendix A. 
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4.0 INVERSION SOLU TI04 . 
The inversion solution, AT c 0, follows very closely along the lines of the lapse 

solution. The governing equation and boundary conditions, (1.2) to (1.4), are identical 

in the two cases and the approach using Hankel transforms is also the same. Again the 

solution requires analytic continuation off the real J3 axis. This has proved to be difficult 

and lead to several errors initially. (The solution given in the Sixth Semiannual Report 

1181 are incorrect.) 

Although the solution can be discussed in terms of rays and the closely related 

saddle point method, this approach has not been used to approximately evaluate the 

soiution in the inversion case. In the lapse case only two rays, at most, pass through a 

given point. In the inversion case, at large distances from the source, many rays may 

pass through a given point due to the "trapping" effect of the inversion. Since the 

saddle point method requires all of these rays and their corresponding saddle points to 

be located, and this is the most difficult part of the method, the approach becomes 

impractical. Thus only the purely numerical method of inversion has been used. 

4.1 Transformation and approximate solution 

The time dependence is removed from (1.3) as in (3.1) and the resulting equation 

Hankel transformed using (3.2) to obtain (3.4). Again the location (in terms of the 

transform variable p) of the transition from oscillating to exponential behavior is given 

by (3.5). However, since ATK- e 0 the transition is at a value of p greater then ad&. 

Using (3.6) and comparing results to those of Section 2.2 one can interpret the solution 
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in the range 0 S p dam as representing the rays that will escape the trapping effect of 

the inversion. These rays either go directly from the source to infinite heights or go 

from the source to the ground where a reflection occurs and then go to infinite heights. 

In the range ala- 5 p s p, the solution represents rays that are trapped by the 

inversion. The transition given by (3.5) applies to rays in this range. Beyond this range 

the rays do not occur in a ray diagram. 

The solution of (3.4) can again be approximated by (3.7) and (3.9) through (3.1 1). 

Equation (3.8) must modified by a negative sign on the tight hand side yielding 

3 
2 

.. 1 +at+- 
T 

m 

- 
g (z$) = - ( 1 + OLZ +- 

This change is necessary since the region of oscillatory solution is below the turning 

point in the inversion case while it was above it in the lapse case (see Nayfeh [q). In 

the inversion case AT/TOO c 0 and thus @ > 1 for 0 I J3 < adam It is convenient to note 

that we may rewrite the logarithm term in this case as 
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1 1 + #  -1 1 - In ( - ) 3 Tanh ( - ) + i JL 
2 1 - @  # 2  

to clearly indicate the choice of the branch of logarithm, In(-1) = +i R ,  the opposite of that 

in the lapse case. Thus, in the range 0 s p < o/a, g3Q(z,p) ranges from slightly below 

the negative real axis to infinity along the negative imaginary axis. For values of p 

between o/a, and p, ranges along the positive real axis from infinity to zero. For real p 

greater than p, values of g3Q(t,P) are along the positive imaginary axis, see Figure 4.1. 

As in the lapse case the boundary between these regions are branch points of the 

function gm(z,p) with the branch lines extending downward from the branch points for 

Re(p) > 0 in P-space. 

The argument of the Hankel functions involves g(t,P) = (g3Q(z,p))m and again the 

branches must be chosen with care. For 0 I p < o/a, g(z,p) is chosen such that its 

phase ranges from slightly greater then zero (or 27c) at p = 0 to lt/3 as the branch point 

at p = &a, is approached from values of p less then ai&. In this region the two 

modified Hankel functions have an oscillatory and exponential growth or decay 

behavior with with one (h,) representing upward traveling and decaying waves and 

the other (h2) downward traveling, growing waves. In the range o/a, < p < pz and 

g3Q(t,P) is real and positive. The function g(z,p) is chosen to be on the line with phase 
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-2d3. In this case the modified Hankel function h, represents both upward and 

downward traveling waves, a standing wave-like phenomena, and h, a downward 

traveling wave. 

The branch line for g(z,j3) = (g3E(t,p))2/3 needs to be defined to extend these 

solutions off of the real axis. Lines of constant phase of gm(z,P) run from the first 

branch point to the second in a manner similar to the lapse case, but with the order of 
the branch points reversed. Figure 4.2 shows the behavior of these lines of constant 

phase. Again a line of constant phase is a convenient branch line. 

If the line where the phase of g3Q(z,p) equals -ld2 is chosen as the branch line for 

&,P) = (g3R(~,p))a3 then the phase of g(z,P) can be made to agree with the desired 

values on the real axis as described above. In addition for real fl and p, < p, g(z,f3) 

has a constant phase of 7123 with h,(q(z,P)) having a decaying exponential behavior for 

increasing z and representing the contribution of waves with a turning point below the 

receiver's height to the total pressure field. 

Using the conditions given in (3.1 4) to (3.1 7) and the physical descriptions of the 

type of waves that occur in each situation the following solutions can be obtained. For 

Z > S  

G = K 1 n , ( N s m  + Ro h$l(S9P)) 1 h*(rl(z,P)) 

(4.3) 

which is identical to (3.1 8) for Po> &> PZ> p> 0, 
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0 

(4.6) 

(4.7) 

the same as (3.22) for Po > Bz > p, > dam > p > 0, 

0 '  
I '  
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(4.9) 

(4.10) 

for Po > p > j3, > p, > da,>o. Here K and R,, and R, are defined by (3.25) and (3.26) 

and 

(4.1 1) 

As discussed above these solutions must be continued off the real axis. As in the 

tapse case the boundaries are chosen as the branch lines for calculating g(z,p), g(s,p) 

and g(0,p) from g3R(z,p), etc. On crossing these branch lines the phase of g(z,p), g(s,p) 

and g(0,p) jumps discontinuously from x/3 to - IK and g,(z,p), g,(s,p) and g,(O,p) jumps 

discontinuously by 2d3. Using (3.30) and (3.31) solutions (4.3) through (4.1 0) can be 

continued off the axis as 
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a 

(4.12) 

(4.13) 
in region B, 0 

(4.14) 
a in region C and 

a 
(4.15) 

in region D. For z < s 

(4.16) 
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in region E, 

e 
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in region F, 

in region G and 

(4.1 7) 

(4.1 8) 

(4.19) 

in region H. 

From these results and the description of the behavior of the function g(z,P) (and 

therefore q) at the branch lines it should be clear that the solution is continuous at the 

branch lines even with g(z,P) being discontinuous. The transformed solution must now 

be inverted using the numerical method developed by Richards and Attenborough [14]. 

e 
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4.2 Inversion Case Results 
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As was discussed above the numerical method originally developed by Richards 

and Attenborough [14) was used to invert the Hankel transformed solution in the case 

of the inversion. This was due to the fact that many rays pass through a given point in 

physical space in the case of an inversion and the number of saddle points which exist 

equals the number of rays passing though that point. Since finding the saddle points is 

the most difficult and time consuming part of that method the approach appeared 

impractical in this case. The numerical method used is identical to that of the lapse 

case as described by Lloyd [15]. 

Only a limited number of cases have been PJJ~ to &?e using the solution 

described in Section 4.1 and the numerical inversion technique. Figure 4.4 shows a 
typical case. The results generally show an interference pattern with 6 dB/doubling of 

distance decay out to distances of the order of thirty meters and a more complicated 

behavior beyond that distance but with no significant change in the rate of decay. This 

latter result is somewhat unexpected from qualitative arguments. Experimental data for 

propagation under inversion conditions is quite limited, with the data presented by 

Sutherland and Brown (161 being the major set. However, this set contains only seven 

measurements at a fixed height over a 675 meter distance. No direct comparisons 

have been made but the data also shows what appears to be a 6 dB/doubling of 

distance decay with some interference minima. Thus at least qualitatively the 

agreement appears good. 

Appendix B contains a listing of the program for the Inversion case. 
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5.0 CONCLUSIO NS 
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Approximate solutions of the Hankel transformed acoustic wave equation with a 

particular, realistic and well-developed vertical sound speed (or temperature) profile 

have been obtained for both the lapse and inversion cases. These solution are quite 

complex and exact inversion of the transformed solution does not appear possible. 

Both approximate inversion using contour integration and the saddle point approach 

and numerical inversion have been used to obtain the physical solution in the case of 

lapse conditions. Only numerical methods have been used with inversion condition. 

The lapse case shows the expected behavior: an interference pattern with a 6 

dB/doubling of distance decay within the shadow region; a rapid decrease in sound 

level in the vicinity of the geometric shadow boundary; and approximately a 6 

dB/doubling of distance decay well within the shadow region. Similar behaviors occur 

for both inversion methods but the contour integration - saddle point method yields and 

larger decrease in the sound level on passing into the shadow than the numerical 

integration technique. The origin of this difference has not been determined. The 

contour integration - saddle point method results appears to agree with the empirical 

model of Weiner and Keast [I 7] better then the results of the numerical inversion 

technique. Since the techniques are applied to the same approximate solution of the 

transformed acoustic wave equation the difference must result from the inversion 

techniques. The numerical technique also produces a weak interference-like behavior 

far into the shadow region. This appears to be artifact of the numerical method as is the 

increase in sound level that frequently occurs as the maximum distance for the 

inversion technique is approached. 

Agreement between the results and experimental data is fair within the shadow 
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boundary. The level is predicted well but the location of interference maxima and 
minima are not accurately predicted. This may be due to the poor fit of the temperature 

profile to the measured profile. No data appears to be available that both gives a 
temperature profiles and sound levels in the shadow region. 

The inversion case shows an interference pattern with a 6 dB/doubling of 

distance decay out to distances of the order of thirty meters for realistic temperature 

profiles. Beyond this distance the decay rate appears to remain nearly the same but 

the structure of minima and maxima becomes irregular. This tends to agree with a 
simple geometric argument since "trapped" rays start to reappear in a ray diagram at 

such distances. Little data is available for comparison in the inversion case. 
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7.0 LIST OF SYMBOLS 

English 

0 

e 

e 

a Sound speed. 
A 
B 
C Function defined by (2.6). 
C,, ... C17 Constants. 

Function defined by (2.4) or constant in (3.7). 
Function defined by (2.5) or constant in (3.7). 

D Function defined by (2.7). 
E Function defined by (2.1 1). 
f Arbitary function 
F Function defined by (2.10). 
Fl Function defined by (2.25). 
F2 Function defined by (2.26). 
F3 Function defined by (2.27). 
9 Function defined by (3.8). 
G Hankel transform of g. 
G 

hl 

h2 

Acoustic pressure with time dependence seperated out, see 

Modified one-third order Hankel function of the first kind, see 
(3.1 2). 
Modified one-third order Hankel function of the second kind, see 
(3.12). 

(3.1) 
e 

e i 4-1 
I lntergal defined by (3.41). 
JO Zero order Bessel Function. 
K Function defined by (3.25). 
K,, ... K17 Constants 

P 
9 
r 

Acoustic pressure. 
Constant determining the strength of a point acoustic source. 
Horizontal distance from the source. 

e 
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Greek 

Horizontal distance from the source. 
Function defined by (3.26). 
Function defined by (3.29). 
Function defined by (4.1 1). 
Height of the point source above the ground. 
Time. 
Temperature. 
Height above the ground surface. 
Acoustic impedance of the ground surface. 

Scale factor for temperature, see (1 2). 
Hankel transform variable replacing r, see (3.2). 
Function defined by (2.1 7). 
Delta function. 
Function defined by (3.1 0). 
Angle an acoustic ray make relative to horizontal. 
Limiting ray angle, see (2.28). 
a,/@ a). 
Arbitrary arguement 
Density of the air. 
Function defined by (3.27). 
Function defined by (2.1 2). 
Function defined by (3.9). 
Function defined by (3.29). 
Circular frequency. 
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Combinations 

a 

a 

a 

0 

e 
i -._ 

AT Change in Temperature between the ground surface and 
far above the ground. 

Subscripts other than given above 

i 1,2 or 3. 
0 

t P 
S 
Z 

00 Evaluated at infinite height. 

Evaluated at the ground, or a reference value. 
Evaluated at a ray turning point. 
Evaluated at the source height s. 
Derivative with respect to height (9, or gJ or evaluated at the height z. 
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Figure 1 .l. Temperature as a function of height above the ground for different times of 

the day as determined by Best [l]. 
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e Figure 1.2. The present model of temperature as a function of height and a set of 

observations by Butterworth [4]. 
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0 Figure 2.1. The nomenclature used in defining the rays. 
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Figure 2.2. Acoustic rays for a lapse case with a = 1.75 rn-l and AT/T, = 0.03 with a 

source at a height of 2 m. 
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Figure 2.3. Acoustic rays for an inversion case with a = 1.75 rn-' and AT/r, = -0.03 

with a source at a height of 2 rn. 
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0 Figure 3.1. Path followed in complex 93’2 - space as the real part of $ vanes from zero 

to infinity and the imaginary part of is constant for the lapse case. 

59  



e 

e 

e 

0 

0 

P =  

Figure 3.2. Sketch of the location of the branch line used for calculating g (z$)  = 

( 93'2 (z$) )a3 in the lapse case. 
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Figure 3.3. Sketch of the three types of physically occuring rays in the lapse case. 

Type 1 rays have their turning point below the ground surface. The turning point for 

type 2 rays is below the source and above the ground surface. Type 3 waves have a 

turning point above the source, this type of ray does not appear in a point source ray 

diagram but occurs in the superposition making up the inverse transform. 
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Figure 3.4. Sketchs of the regions in complex P-space where the various forms of the 

solution are valid for the lapse case. Part a) is for points above the source, part b) is for 

points below the source. The lines are branch fines for g (O,P), g (z$) and g (s$). 
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Figure 3.5. Typical results for a lapse case using the saddle point method only, from 

Cheng [13], as compared to the Weiner and Keast empirical model [17]. The solution 

extends only to the shadow boundary at about 68 meters. 
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Figure 3.6. Typical results for a lapse case using the combined saddle point-contour 

integration method. From Ma [12]. 
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Figure 3.7. Typical results for a lapse case using the numerical inversion technique. 

From Lloyd (1 51. 
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Figure 3.8. Comparison of the results of the saddle point-contour integration method 

and the numerical technique for a lapse case. 
0 
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Figure 4.1. Path followed in complex 93’2 - space as t h e  real part of p varies from zero 

to infinity and the imaginary part of j3 is constant for the  inversion case. 
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3R 
Phase g = -7d2 

Figure 4.2. Sketch of the location of the branch line for calculating g (z$) = 

( 93’2 (z,p) )a3 in the inversion case. 
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Figure 4.3. Sketch of the regions in complex P-space where the various forms of the 

solution are valid for the inversion case. The lines are branch lines for g (z,P), g (s$) 

and 9 (0,P). 
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Figure 4.4. Typical results for an inversion case using the numerical inversion 
technique. 
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APPFNDIX 9 - The Lapse Case Program 
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The material below is from Lloyd [15] and both describes the program used to 

calculate the transformed solution and to carry out the inversion and presents a listing 

of that program. The program is named FFTPRESS and was written to be used on a 

VAX 750. Descriptions are given both of the subroutines comprising the program, of 

the input variables and a set of ”helpful hints” are given that may be useful in running 

the program. The intent of this section is not to describe in detail the operation of the 

program but to allow a somewhat experienced Fortran user to run the code as it was 

created. 

SUBROUTINES 

Input: Subroutine to input the necessary parameters to the main 

program. The following sentences summarize each of the input variables 

in the order they are requested. Tinf is the temperature at infinite height, 

normally 300 K. Tinf is used to calculate the speed of sound a. Dtot is the 

temperature change from infinity to the ground normalized by the 

temperature at infinity. Dtot is normally 0.025. Alpha is the term used in 

the temperature profile defining the altitude at which the temperature 

gradient becomes effective. Alpha is normally 2.5 (meters)”. Splref is 

the reference sound pressure level used in the calculations of sound 

pressure level in dB. Omega is the frequency of the sound source in 

radkec. Resistance is the flow resistance used in the Chessel model and 

is normally 300 cgs units. Zr is the height of the receiver in meters. Zs is 

the height of the source in meters. Alp is the amplitude of the imaginary 
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component in transformed space. Alp greater than zero is integration 

above the real axis. The product of Alp and the step size AK should not 

exceed 0.01 and may be much smaller. Alp is replace by p in the thesis. Ns 

is used in an analytical function that is subtracted from the sampled 

solution to null the effects of off axis integration. Ns is normally 3. If Ns 

is equal to zero then no subtraction occurs. Ns is replaced by 6 in the 

thesis. Me nonzero signals the inverse Hankel transofrm routine that the 

terms representing the integral extended to infinity are to be included in 

the inversion. Me is also the number of terms to be used and is normally 5. 

ryie is repiaced by M in the thesis. N1 is the number of points to be used. 

N1 depends on the maximum horizontal distance desired. N1 equal to 4096 

points is a common value. Np and N1 are used interchangeably. N1 must be 

equal to an integer power of two. Delbeta or delK are the step size in 

complex K space. In the program Delbeta and OelK are used 

interchangeably. Delbeta also depends on the maximum horizontal distance 

desired and also on the maximum Beta allowed. This maximum Beta is very 

near to omega divided by the speed of sound. Beta and K are used 

interchangeably in the program and thesis. 

Region: Subroutine used to determine which of 8 diffferent forms of 

the general solution are to be used. The selection depends on how the 

waves are interferring at that particular value of K. Region calls to 
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subroutine g32all to identify if the complex part of g3I2 has changed sign. 

The sign change indicates a different set of rays are combining to form the 

solution. With each set of rays a different form of the solution is required. 

Hall: Subroutine to calculate the Hankel functions H1 and H2 and their 

derivatives in terms of the Airy functions, AI and BI. Hall calls to Cgbair 

to get the Airy functions needed. 

Ha112: Subroutine to calculate only the Hankel functions. 

Cgbair: Subroutine to calculate the Airy functions. Cgbair uses either 

an asymptotic or a small argument approximation of AI and BI depending on 

the value ofcomplex K. 

Gzalll: Subroutine to calculate the derivatives of the g3I2 function. 

These values are used to compute the reflection coefficients. 

Gall: Calculates the g function needed to calculate the g3/2 function. 

Dafb2: Subroutine modified from Attenborough and Richards to 

calculate the inverse Hankel transform using fast Fourier transforms. 

Dafb2 calls to subroutine Zeta to calculate the terms representing the 
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extension of the integral to infinity and to subroutine Fork used to perform 

the actual fast Fourier transform. 

Zeta: Subroutine to compute the value of the integral to infinity. 

Fork: An efficient fast Fourier transform taken from Attenborough 

and Richards program. 

VARIABLES 

Beta: Used interchangeab!y with K, both are the complex aigument of 

the transformed solution. 

Tau: The term T used in the reflection coefficients developed by Van 

Moorhem. 

Sei: The term w used in the reflection coefficient developed by Van 

Moorhem. 

Ro: The actual reflection coefficient. 

R1: The modified reflection coefficient representing refraction. 
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En: The complex argument of the Hankel function. En is a function of 

K (or Beta) and the height of the source or receiver, whichever applies. 

Rlemda: The ratio of omega to speed times alpha. The reciprocal of 

the wave number. 

Zimped: The complex impedance of the ground normalized by the speed 

of sound and the density. 

e 
22 and 23: Heights of the receiver acd source, respectively. 

0 Gbar (K) or Gbar(Beta): The sampled function to be inverted. 

Gbar (r): The inverted solution. The real space answer. 

G: The sound pressure level result. 

Rad: The horizontal distance of the present (Gbar (r) 

Rad2: The logarithm of Rad. 
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HELPFUL NOTES 

1. All units used here are examples only. The only requirement in 

operation is to use a consistent set of units. 

2. The output of sound pressure level and horizontal distance along 

with an echo of input parameters is written to file FOR044.dat in the 

present diretory. 

3. To plot the result at the University of Utah Mechanical Engineering 

Vax system type RUN PLOTPROMPT and the rest is interactive. 

4. Basic instructions for use on the University of Utah Mechanical 

Engineering Vax system are: 

a. Log on using normal sequency of user name and password. 

b. Type @O to link all necessary files together. instead of combining 

all files into a large file several small trackable files are used for ease of 

editing. 

c. Type RUN FFTPRESS to begin execution. 

d. Input the variables as requested by subroutine Input. 

e. At completion FFTPRESS will display FINALLY FINISHED. To plot the 

results type RUN PLOTPROMPT. This is a standard plotting program that 

uses the system subroutine Mgraph. The data file name is FOR044.DAT. 

The data file contains 2 columns. The fist column of the data is the 

logarithm of the horizontal distance. The second column of the data is the 

sound pressure level. 15 lines are used at the beginning of FOR044.DAT to 
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echo the input parameters, therefore tell PLOTPRMPT to begin accepting 

data at line sixteen of file FOR044.DAT. The plot will display on graphics 

terminals only. Mgraph asks if a hard copy is desired when crt plotting is 

finished. PLOTPROMT has autoscaling capability that can be turned on or 

off and offers many other self instructing options. Mgraph creates files 

named HPPLOT.HPL, however, it is recommended to change the name as soon 

as possible to avoid deletion of previous plots. If a hard copy plot is 

desired after exiting PLOTPROMT type PLOT then the file name. 

f. Log off with command LO. 

a 

0 

0 

0 
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m m  mms c ~ ~ ~ ~ ~ ~ ~ * ~ * * * * ~ * * * ~ ~ ~ ~ ~ ~ ~  
* 
* 

C MAIN ROUTINE To DEVEIQPE THE GBAR(b,Z) To BE INVERTED 
C TKE MAIN WILL INPUT THE NECESSARY CONSTANTS,CAIrcuLATE BErllA, 
C SELECT FOFM OF SOUPTION CAI& mE SUBROUTINZS AND COMPUTE RO,TAU, * 
C SCI,g,!PHE HANKEL FUNCTIONS AND FINALLY CALCULATE GEAR(b,Z).  

c suBRouTwEs: 

* 
Cmr++++++++----.,,..,,,, 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
" 
I; 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

G32AIL: 

E I O N :  

GZAIlL: 

GALL: 

HALL: 

m 2 :  

DAFj32: 

ZETA: 

FORK: 

INPUTS: 
TI": 
DTOT: 

SPEED: 
0MM;A: 
Z: 
S: 
SPIdlEF: 

FINDS !BE FUNCTION gA3/2(b,z) USED To DETEMm 

GIVEN gA3/2 D E T l B M m  WHICH R E I O N  OF 
WHICB FUGIaBJ OF SPACE EE'U IS IN. 

SPACE PRFSENT BETA I s . I N .  
FINDS gz(+,Z)=dg/dZ h !El3 OTHEX DERIVATIVES 

USED TO FIND K,TAU,SCI. ALSO RETURNS EI1A(b,Z) 
" A T  1s.- A3 THl3 AR- IQR HANKEL 
FUNCTIONS. G W  CALIS TO GALL TO GET g. 
c m m  -g FUNCTION. .' 
CALCbLArn THE "EL FUNCTIONS FROM AIRY 

FUNCTIONS. CALLS CGBAIR TO GET A I R Y  FUNCTIONS 
C-TES ONLY !THE HANKEL FUNCTIONS NOT lEE 

DFRIVATIVES AS HAIL DOES. C A U S  CGBAIR Azso. 
GIVEN GBAB(b,Z) USES MEI"OD DlWELOPED BY 
MCHARDS AND ATTENBOROUGH To PERFOFN THE 
HANKEL ll4VBlSION. USES suBRouTINE3 ZETA,FORK. 
DAFB2 MAKES SEVHiAL CORRECTIONS TO A GENERAL 

AND ATTENBOROUGH PROGRAM. 
~~~ THE SUM OF ME TERMS WHICH APPROXIMATES 

G3AR[b,Z) TO INFINITY I N  THE BETA SPACE. 
A VERY FAST FF!P USED TO PlBlWRM ACTUAL 

ZNVWSION OF GBAR(b,Z) FROM THE BETA SPACE. 

TKE STANDARD CODE IS FROM RlCHARDS 

THE TEMPERATURE AT V W Y  LARGE Z 
THE DELTA T/T PARAMIDW REPRE~NTING THE 

T B I P E X A T m  GRADIENT. .., . 
'PARAMETEI USED m DEFINITION OF mmm 

GRADIENT. 
SPEED OF-SOUND AT T(  INF) . 
FREQUENCY OF SOUND IN RADIANS/sM:. 
FIXED DISTANCE TO THE O B S ~ ~  22 IN PROGRAM. 
FIXED DISTANCE TO THE SOURCE 23 I N  PROGRAM. 
FtEEBENCE SOUND PRESSURE LEVEL USED TO COMPUTE 
THE SOURCE STRENGH 0. 

C 
C ALP: THE TlBM USED To INTEX;RATE OFF REAL BETA AXIS. 
C NS: PARAMETFR I N  THE ANALYTICAL FUNCTION IN DAFE?. 
C ME: PARANETEX3 TO PRODUCE SUM TO INPINITY IN DAFB2. 
C N1: S I Z E  OF ARRAY TO BE INVERTED. 
C 
C 
C NOTE: 

RESISTANCE: GROUND REsISTANCE-~ THE CXE3SEz;L MODEL. 

DELBETA: STEP S I Z E  USED FOR BETA AIS0 DELK I N  DAFB2. 

K AND BE2A AND DELK AND DELBETA ARE USED INTl3RCHANGMLY 
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C 
c VARIABLES: 
C BETA: INDEPENBXI! VARIABLE I N  awJsFQRMED SPACE. 
C TAU: TAU DEFINED I N  PMH3 BY VAN XORHPI. 
C XI: XI DEFINED I N  PAPER BY VAN MOO-. 
C RO: RO CONSTANT DEFINED I N  VAN Moo-. 
C R1: R1 CONSTANT DEFINED I N  VAN MOORHPI. 

C RIDlDA: CNEA/(ALPHA+SPEED) 
C BRO: BR4NCH CUTS I N  THE BEI!A SPACE ASSOCIATED WIm 
C BRZ:. TlIE SQUARE EiooT AND 3/2 FWER FUNCTIONS 

C ZIMl?ED: GROUND IMPEPENCE I?ORMALIZED BY DENSITY AND SPEED. 

C GZZ : a d d 2 2  FROM GzAI3rI'. 
C U E E R  DERIVATIVES PER !&IS NOTATION 
C 2 1  : JUFIBENCE DISTANCE O..O. 

C m: HANKEL mm1m ARGUMENT. 

C BRS: INgmgTHREEWm. 
C E R W :  BFugm & AT mDsx/sPlm. 
C GZ: a g / a  FROM k w 1 .  

C 22: 2 AS'ABOVE. 
C 23: S As ABOVE. 
c-" --*++++SHHc+ 

IMPLICIT DOUBLE PREISION(A-H,&Z)  
INTM;w IREGION 
COMMON /INTEG/-NS,M&Nl 
COMMON /AFB2IN/ ALP,DI!LBETA I 

COMMON /CONSTANT1 / SPEED, 0MM;A 
COMMON /CONSTANT2/ ALPHA,DToT 
COMMON /CONSTA#T3/RI;EMDA, Q 
COMMON /CONSTAl$T4/CMPI, CK, RO, R1 
COMMON /HEIGHT/ 2 1 , 2 2 , 2 3  
COMMON /CETA/ZlEN,Z2EN,Z3EN 
COMMON /BRANCH/BRO, BRS, BRZ, B R W  
CoMpUX*16 BmA, GZ , GZZ 
COMPLM*l6 H2,H21 
CoMpLM*16 E N , ' Z l ~ , Z 2 E N , Z ~  
CCM?XX*16 -€I1 ,H11 
COMPI;M*16 CK,TAU,SCI,ZIMPED 
COMPLEX*16 DUM1 , D W , R O , R l  ,CMPI 
CoMpLM*16 GBAR ( 32768) 

Q=. oooO2*4 "3 141 5926*4 6 V (  1 0. "( SF"/20. Do) ) 

PRINT *,'THE lU.XlWING IS AN EX340 OF !DE INPUT I 

PRINT *, 'IN THE F0LI;OWING ORDEFi ALP DELTA KE Np DELBETA' 
PRINT *,'SPEED OMEGA ALPHA M'OT 21 22 23 RESISTANCE' 
PRINT *, 'TINF,SPIREF' 
PRINT *,I ' ! SKIPALINE 
PRINT *,'THESE Vj'iUJlB ARE AIS0 WRITTEN To FILE 44' 
PRINT *,ALP, NS ,ME,Nl, DELEETA, SPEED, OMEGA, ALPHA, DTOT 
PRINT *, 21 , Z 2 , 2 3 ,  RIBISTANCE, TI", SPI"  
WRITE(44,*) 'ECHO OF INPUT ALP NS ME DELBEX'A SPEED OMEGA ALPHA 

cm W~PT(TINF,SPIAEF,RESISTANCE) 
SPEED=DSQRT ( 1 .4w287. DOYTIN-F) 

& DTOT 21 22 23 RESISTANCE TINF SPIAEP' 
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wRITE(M,*) ALP,NS,ME,Nl ,DELBEX!A,TINP,SP,OMEGA,ALPHA, 

RI~FMDA=OMEGA/( S P ~ * A I S H A )  
PI=3 1 41 5926 
CmpI=~O.O. 1 .Do) 

& DTm, Z1,22 ,Z3,REsISTANCE,  Q, SPEED 

RATIO=FR/~ISTANCE 

x-11 .gmRArIo++(-.~Do) 
R=l.+9.08DO*RATIOr-+(-.7~) 

ZIMPED=DCMPIX (R , X ) 
ERC&MIGA/SPEED*DSQ[l .DO/(1 .DO 4 ALPHA+Zl+DTOT)) 
BRZ=oMEGA/SPEED$DSQEir'(. (1  .DO+ALPHA+ZZ)/( 1 .DO+ALP€LA+Z~+MIOT) ) 
BRS=OME+A/SPEED*DSQRT ( (,l DOtmu113) /( 1 . DO+ALPHA*Z3+DTOT) ) 
BRW=OMM;A/SPEED . 
m * , I  

* t -  P m  *,I .' 
PRINT *, I W  WCH CUTS ARE',BRO,BRZ,BRS,BRW 
wRIm(44,*) ' T H E  BRAmcII CUTS ARE',BRO,rn,BRs,BRW 
DO 1 ,I=l ,Nl 

- -  
. *  

'BETA=DCXFI(EF&AT(I-? 1, (-m>:*(r>mm~) 
IF (ABS(BE2A) .I;E. . m l )  !JXEN 

ENDIF 
CALL GZALL1 (Z1 ,BEl!A,GZ,GZZ,D) 
z1 m=m 
DUM1 =Gz 
D W = G Z Z  r; 

CALL GZAYIl (Z~,BEPA,GZ,GZZ,€W) 
ZZ!N=EN 

BETA=DCMPIX( .0000001DO, (-ALP))*DEI;&TA 

CK=Q/l2. DO/CMPI/( RLEPIDA=( 2. DO/3. DO) ) *l . O/( CDSQRT (GZ) ) 
C A U  GZAYIl(Z3,BETA,GZ,GZZ,EN) 
Z==m 
CK=CK*l . D O / ( C D S W ( G Z ) )  
TAU=ALPHA*RIJ!NDA-I/Z. DO~IXPED*DUM~/DUMI 
sciI&XPED* ( (3 /2. )*( 2 D0/3 Do)  ) * ( (RIBlDA ) * ( 2. DO/3. DO) ) *DUM1 
CALL HAIL(  2 1  EN,HZ,H21 ,H1 ,H11) 
DUM1 =TAU*Hl +CMPI+SCI*H11 
DUM2=TAU+II2+cMpI+scI*HZl 
RO---DUMl /DUM2 
DUM1 =CMPI*PI/6. DO 
R1=( C D M P (  -DUM1 )*( CMPI*RO) ) /( ( C D m  (DUM1 )-2 .DO)+( RO+*2. DO) ) 

GO ~~~O,~,'J0,40,50,~,70,80~,IRM;ION 
CALL R M ; I O N ( B ~ A ,  LREGION) 

C Y++++++- REION 1 BEGINS HEXE FOR 22>23 OR Z > S  * w + * ~  
10 CONTINUE 

CALL W ( Z 3 E N , H Z , H l )  
DUM1 =Hi +RO*H2 
CALL HALT2(22EN,H2,Hl) 
GBAR( I)=CKW*DuMl 

500 
C uiwM++- REGION 2 BEXXNS HERE FOR 22>23 OR Z>S -***++)+ 
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x) CONTINUE 
CAI& HAIIL;!(Z3Dl,H2,Hl) 
DUM1 =H1 +R1 *H2 
CALL HAI;L2(Z2BJ,H2,H1) 
GBAR ( I ) = C K ~ * D U M I  
~ 5 0 0  

CALL HALL2(Z3B?,H2,Hl) 
DUMl =(HliBm)*Rl +CDEXP(CMPI*PI/3.D0) 
CALL HAIU(Z2EN,H2,Hl) 
~ m (  I)=CK*HZ*DUMI 
GOT0 500 

c -- REGION 3  INS m FOR 22>z3 CR z>s - 
30 CONTZNUE 

5 

C i"W REGION 4'BEXXNS HERE FOR 22>Z3 OR Z>S i"+ 
.* . .  40 comm 

CALL HALL2(Z5EN,H2,Hl j .. ' 
DUM1 =CDEXP(CM.P~*PI/3~DO)*Rl *(H1 +RO*H2) 
CALL fwIL2(Z2R$,H2,Hl) 
GBAR (I ) =CK*DUbll'*( H2+( C D M P  (CMPI*PI /3. DO)*Hl) ) 
m 5 0 0  

C iwM-"++ RXXON 5 BEGINS HERE FOR 22<23 OR Z<S 
50 CONTINUE 

CALLI HAIG?(Z2EN,H2,Ht) 
wMl=Hli4?OW .' 

GBAR ( I ) =CK*H2*DUMl 
GOTO 500 

CAI& W ( Z ~ , ~ , H l )  
DUMl =H1 +R1 *H2 
CALL HALL2(23EN,H2,Hl) 
GBAR (I ) =CK*H2*DUMl 
GOTO 500 

DUMl =CDEXP (CMPI*PI /3. DO) *R1 
CALLI EIAI;L2(Z=,H2,Hl) 
DUMl =DUM1 *(Hl+WH2) 
CALL H A L L 2 ( Z ~ , H 2 , H l )  
GBAR ( I ) =CK*H~*DUMI 
m 5 0 0  

DUM1 =CDExp (cMpI*PI/3. DO) *R1 
CALL HALL2(22IN,H2,Hl) 
DUMl =DUM1 *(H1 +RPH2) 
CALL HKLL2(23EN,H2,Hl) 
GBAR ( I ) =CK*( H1 WDMP (CMPI*PI /3. DO)+H2)*DUM1 
coTo500 

DID OF GBAR(BETA) C-TIONS EASED ON REIONS D E T l % " E D  
MULTIPLY BY BETA ONLY TO MATCH VAN MOORHEM DEFINITION TO 

CAI.& HALL2(23Dl,H2,Hl) c 

C i"+WW REGION 6 BEINS "3 FOR 22<23 OR Z<S iwH"+* 

60 CONTINUE 

c -  REGION-^ REGINS KERE FOR z2<23 OR z<s - 
70 C O N T m  4. 

C *iw"+ REGION 8 BEGINS KERE FOR 22<Z3 OR Z<S --*++ 
83 CONTINUE 

C 
C 
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C RICHARDS AND ATTIENBOROUGH. 
500 CONTINlTE 

1 CONTINUE 
GBAR (I )&BAR ( I )*BETA 

PRINT *, ' LAST BFITA MCUTED IS' ,BETA 
cm DAFB~(GBAR) 
DO 2.1=1.N1/2 ' 

RAD2 *PI *DFTOAT ( 1-1 ) / ( DF'K)AT (N1 ) *DELEETA ) 
IF(RAD.m.o.0 1 THEN 

5 
ENDII? 

RAD2=DI&l O(RAD) 
G=b. DO*DLC)Gl O.(ABS ($BAR( I)  ) ) 
WRITE(44,9093)  RAD2,G 

€"T *, 'FINALLY FINISHED' 

STOP 
END 

,* 5 CONTINUE 
2 CONTINUE L 

9093 FoRMAr(5x ,3G18e8$ ' 
1, 

C 
C 
C 
C * 

m o m m  INPU!P(TINF,SPLREFJWISTANCE) 
c+W---=*--Y,,,,,,,,,,,,,,,,, 
C 'ME PURFQSE OF "IS ROUTINE IS TO INPUT ALL NECESSARY P- To * 
C THE MAIN ROUTINE. TBE D E F I X T I O N  OF EACH PARAME;Tw WIU HE D E F m  * * C AT ITS RESPECTIVE DfPUT- 
C-- ~ + + + + + - * ~ ~ i " e i H " k ~  

IMPLICIT DOUBLE PRECISION (A-H,o-z) 
COMMON /INTM;/ NS,ME,Nl 
COMMON /Al?B2IN/ ALP,DELBETA 
COMMON /CONSTANT1 / SPEED, 0MM;A 
COMMON /CONST&TI'2/ ALPHA,DTOT 
COMkm /CON8TANT3/ lUDIDA,Q 
COMMON /CONSTA"4/ CMPI , CK , RO , R1 
COMMON /HFJGH!l!/ 21 , Z 2 , Z 3  
COMMON /CETA/ Z1 EN, Z2EN, Z3EN 
COMMON /BRANCH/ BRO,BRS,BRZ,BRW 
WRITE (6,899) 
WRITE( 6,900 1 
READ *, TINF 
WRITE ( 6 , 9 0 1 )  
REclD *, DTOT 
WRITE (6,902) 
READ *, ALPHA 
WTE (6,903) 
READ *, s m  
wFmE (6,904) 
READ *, OMEGA 
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R E A D * , %  - 
WRIm (6,909) 
READ *, ME 
WRITE (6,910) 8 

READ *, N1 ,' 
WRITE (6,911) 
READ *, DELBETA . . 

i 
v . .  

& ,/) - 

& 9 /> 
& , /) 
& 9 / I  

909 FORMAT (X,12X,46H INPUT THE 

910 FORMAT (X,12X,46H lXR.JT THE 

911 FURMAT (X,12X,46H INPUT THE 

RETURN 
END 

C 
C 
C 
C 

DELTA PARAMETIR USED I N  I N T X W k I O N  

NUMBER OF THNS IN SUM To ~ I N I T Y .  

NUMBER OF POINTS TO BE USED. 

STEP SIZE IN BETA (OR K )  SPACE. 

SUBROUTINE RIDION( BETA, IREGION) 
C W + ~ ~ ~ * ~ + * * * * ~ ~ * * * * * * * * ~ * * * * * * * ~ ~ ~ * * ~ * * * ~ * ~ * * * * ~ ~ ~  

83 



a 

a 

e 

e 

0 

e 

0 

0 

0 

IMPLICIT DOUBLE  ISI ION (A-H,O-Z) 
IN!l%GZZ DOUBLE PKECISION K1 
CoMrmM*16 BETA, G32C1, G32C2,G32C3 
COMPUWl6 G32P1, G 3 2 P I 2 ,  G 3 2 P I 3  
COMMON /IN!PD3/NS,ME,Nl 
COMMON /AFB2IN/ALP,DELBETA 
COMMON /CONSTANT1 /SPEED, OMEA 
COMMON /CONSTANT2/AJiPHA,DTOT ~ 

COMMON /CONSTANl!3/FUZMDA, Q 
COMMON /CONSTANl!4/Cl@I, CK, RO , R1 
COMMON /HEXGRT/ Z1,22 ,@ I 

COMMON /CETA/ZIBJ,Z2EX,Z3IN , 

INTEGER IREGION *' 

COMMON /mcH/mpts.BRz,~ 

CALL G3=( z3, =, 63x3 1 

CALL G32AI;L(Zl , h T A b G 3 2 C 1  ) 
CALL G 3 W ( Z 2 , B E T A , G 3 2 C 2 )  

THE EVENT W T  OR BE5 AND BRW ARE VERY CLLlsE THE FOLLOWING 
IS USED To INSURE: PROPIR,FlEEION IS CHOSEN. W1 AND W2 ARE SIMpI;E 
WEIWP' FACTORS T(ZDEI'BMXX WHICH DIRECTION TO EVALUATE RFx;IONS. 
BY WEIGHTING TEE SELETIQN DEPENDING HOW CIL)sE BETA IS TO BRW 
TtIE m10Ns ARE FOUND I N  THE RF;yEF(sE mm. 

-=MAX( 22,23) 
w1=1 .o 
w2=1 .o 
MJD=OMEGA/SPEER * 

- 
r; 

~uD=~uDwi +Du~+wiicDsQRI' ( ( 1 . O+ALPHA*POSMAX) / ( 1 +AL~HA*~~SMAX+DT~T ) 
DUD=DUD/2 

I F ( Z 2 . L T . 2 3 )  T" 
GOT0 1 2 0  

END IF 
C FOR -(22>$3 OR Z>S)** THE FOL;TX>WING IDENTIFY RIEIONS OF SPACE 

A I 1  =DIMAG(G32Cl) 
AI2=DIMAG( G32C3) 
AI3=DIMAG( G 3 X 2 )  

IF(REAL(&TA) .GT.DUD) THEN 
GOT0 1 1 0  

IF(AI3.GT.O.O) THEN 
END IF 

IEZM;ION4 
GOT0 1 5 0  

IREGION=~ 
W O  1% 

IREGION=2 

ENDIF 
IF(AI2.GT.O.O) "EN 

mIF 
IF(AI1 .GT.O.O) T" 
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GOTO 150 

IRM;ION=l 
COT0 1 5 0  

110 CONTINUE 

IRKfION=l 
GOTO 150  

Ip(AI2.ur.O.O) 
r n I O N = 2  
GOTO 150 

m1m=3 ,, 
G O T 0 1 5 0  

i t  . 

BID IF 

I F ( A I 1  .U.O.O) !p" 

mIF 

\ ENDIF 
IF(AI3.U.O.O}'= '. 

mIF 
I R E I O N 4  
GOT0 1 5 0 '  . ? 

C FoR++(22<23 OR Z<S)w' TIEE' FOLIQWING IDEXTIFY REGIONS OF SPACE 
1 m  coNTm 

AI! =DIMAG(G32Cj j 
AIZ=DIMAG(G32C2) . , 

AI3=DIMAG (G32C.) 

ENDIF 

IF (AI3.GT.O.a e 
U I E G I O N S  *: * 

GOT0 150 
ENDIF 
IF (AI2.GT.O.O) THEN 
IREGION=7 
G O T 0 1 5 0  . 

UIEGION=6 

IF ~~( rn) .GT.Dm)  !I!" 
GOT0 1 3 0  - 

""if IF *( 1 .GT:O.O) THEN 

ENDD 
IREGION=s 
GOTO 1 5 0  

1 3 0  CONTINUE 
IF (AI1.LT.O.O) 

ENDIF 
IF (AIZ.EJ?.O.O) 

ENDIF 
IF  (AI3.LT.O.O) THEN 

GOTO 150 

IREGION=~ 
GOT0 1 5 0  

IRM;ION=6 
GOT0 150 
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0 

0 

0 

a 

IRn;ION=7 
ccvro 150 

ElD IF 
IFEION=8 
mo 150 

150 CONTINUE 
RETURN 
END 

C 
C 
C 
C k 

C# 
C* 

C* \ ' t  - * 
C* 1 C-- .1HHHH"t+ 

IMPLICIT DOUBLE PRKISION ( A - H , O - 2 )  
CoMElrM*16 BETA, PHl , SQw'l , sQwI2, FOO, G32C ,MODI& 
COMPLM+16 S1 ,A,B,S 
COMMON /CONSTANT1 /SPEED, 0MM;A 
COMMON /CONS!MV2/AI;pHA, M'OT 
coma /BRANCII/BRO,BRS,BRZ,BRW L 

AA=1 .+ALwA+z+D!rm 
B=I .-( (SPEED*RETA/~A)*(SPED*~A/=A))  
St-S3QR!l!l (BEI!A,Z) ' . 
S=SQFIT2 ( E T A )  
PHI41 /(S*DSQRT(AA)') 
IF(M'OT.EQ..O.OR.CDABS(l .-PHI).LT.lDs) !I!" 

ELSE 

ENDIF 
G32C.3SQR!2 (AA)*S1-- 5*~OT*FOO/S 
RETURN 
END 

SUBROUTINE G 3 2 U (  2, BSl!A, G32C ) 

* .< 

C* G 3 2 A U ' C m T k  &/2 FUNCTION * 
* 

FOO=.O 

FOO=MODIXK;((l .+PHI)/(l .-PHI:)) 

E L N  OF FUNCTIONS USED ABOVE. 

~ ~ + ~ * ~ * * * * * * ~ * * * * + + * * * * ~ H * * + + ~ * ~ ~ * *  

SQR!L'l AND SQRT2 ARE FUNCTIONS TO CALCULATE SQRT(BmA) GIVEN 
DESIRED BRANCH CUTS AND DIRECTION +IMAGINARY OR -IMAGINARY. 

* 
* 

-"He*- * ~ + + + + + * + + ~ + + ~ ~ ~  
FUNCTION SQFU!l (BIEA,Z) 
IMPLICIT D O U ' B ~  PRECISION (A-H,O-2) 
CWLEX*16 RETA,AA,SQR!Cl 
COMMON /CONSTANT1 /SPEED, OMEGA 
COMMON /CONSTANT2/ALPHA, M\OT 
AA=I .-( ( (SPEED/OMEGA)*BEIA)*( (SPEED/OMEGA)*B~A)) 
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a 

a -1 .+ALPHA+z+DToT 

a 

a 

a 

0 

BRAN1 =(oMEGA/SPEED)*DSQR!l'( ( 1  .+ALpHA*Z)/( 1 .+ALPHA*&m)) 
IF ((DREAL(BEJ!A) .GE. BRANl) .AND. 

SQRTl =-CDSQRT(AA*BB-Myrr) 
1 (DIMAG(EETA) a. 0.0)) WEN 

mcm 

,, 

FUNCTION SQFQ2 (€ETA) 
PLPLICIT DOUBIJ3 W I S I O N  (A-H,*+Z) 
COMPlXX*16 BETA,$, sQrrr2 
Cor@ION / m m /  o,BRs,BRz,BRw 
COMMON /CONSTANT 1 /SPEED, OKEGA 
COMMON /CONSTA"Z/ALPHA, DTOT 

IF ((DREAL(BE!PA) .GE. BRW) .AND. 
M=I 0 - (  ((SF~$MEGA)*B~A)*(. (SPEED/OMMIA)*BEA)) 

1 (DIMAG(BETA) .m..o).J THEN 
c 

SQRT2=4DSQRT(AA) 
EISE 

sQwl2=C~QRT(AA) - END IF 
RErm 
END .. 

C 
C 
C 
C c + 1 " C ~ + M H C ~ + + ~ ~ * * * ~ ~ ~ ~ * ~ * + + ~ * ~ ~ * * + + + ~  

C t  -*- - C FUNCTION-MWUX; COMPUTES THE IO3 OF BETA GIVEN DIRECTION AND 
C IOCATION OF BF" CUTS. 

FUNCTION MODIOG(QUAN) 
IMPLICIT DOUBLE PRECISION (A-H,o-z) 
COMPLEX*16 QUAN , MODLOG 
IF ((DREAL(QUAN) .LE. 0.0) .AND. (DIMAG(QUAN) 

1 .GE. 0.0)) THEN 
MOD-DIOG (QUAN).+DCMPIX( 0.0, -2*3.1415927) 

ETSE 
MODIXX;=CDUX; (QUAN) 

RlD IF 
RETURN 
m 

C 
C 
C EM) OF FUNCTIONS USED ABOVE. 
c .  

-+++.re* 

* 
* 
* 

0 
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e 

0 

0 

C 

C - c  i " H k * u - E * -  

C HALT, USES SUEROUTINE CGBAIR To C m m T E  1/3 ORDER * 
C FUNCTIONS FROM AIRY FUNCTIONS. * 
C " t U - K l f - E * * P  **-- 

SuBROuTINE HALL(Z,H2,H21 ,H1 ,H11) 

IMPLICIT DOUBLE PRM=ISION (A-H.0-Z) 
COMPIEX*I 6 Z,AI ,BI,AIP,BIP,-K,K~,HI ;=,HI 1 ,mi 
coMpLM*16 ARG.CI 
CI= Dm.x(o.Db, 1 .Do> 
PI= 3.141 592654Do 
A R k  DCM.PIX(O.DO,-PI/6.DO) ' L. 
K= (120DO)++(1 .DO/6.W)WDEX2(ARG) 
KS= DCONJG(K) ' . 

CAU CGBA~(-Z, AI, BI , AIP; BIP)' 
w= KS*(AI+CI*BI),' - 
HI i = -K*(AIP-CI*B~P) 

H1= K*(AI-CI*BIJ ' t 

H21= -Ks*(AIPm*BIP): 
RETURN 
m 

C 
C 
C 
C 

C; 
C CALCULATE AIRY FUNCTXONS FOR COWLEX*l6 AR- 
C REF. "TIBOOK OF MA-TICAL FUNCTIONS, ARRAMOWITZ AND STEGUN. * 
c EN!mY: * 

* 

SUBROUTINE CGBA~(Z, AI, BI , AIP ~BIP ) 

* 
.. 

C 
C IF /Z/ LT 6 

CAUXLATE ARGUMINT(2) AND ABSOLUTE VAUIE(Z) * 
* 

C USE EQS* 10-4.2 THRU 10-4.5 FOH AI,BI,AIP,BIP * 
C 10 ElsE IF ARG(Z) L!l' PI/3 
C THEN CAICULATE ZECA(Z) * 

* 

C USE 10.4,,59, 10.4.61, 10.4.63, 10.4.66 FOR AI,BI,AIP,BIP, 

C USE EQS. 10.4.60, -10.4.62, 10.4.64, 10.4.67 FOR AI,BI,AIP,BIP 
C RDIF * 
C 20 ELSE CAI.CULA!l!E !ZH!A(-Z) * 

C ENDIF * 
C HIT * 
C END * c + H C + + + M H C + + * + + ~ * + + + ~ * * * * ~ M C + + ~ + + ~ ~ ~ ) M ) H C ~ + + *  

IMPLICIT DOUBLE PREISION (A-H,O-Z) 
CoMmLM*16 2,AI ,BI, AIP,BIP, ZETA, CZETA, Z14, SUM1 , SUM2, SUM3, "44, 

1 ZETAP,FAcTl ,FACT2,SN, CS,lil'ERM,FPTBlM,GTERM, GPTERM,F,FP, G,GP,Z3 

DIMENSION C(21) ,D(21) 
DATA C1 ,C2,PIRT,PI4/.35502805391)0, .25881940381)0,1.772453851DO, 

DATA C/1 .DO, .069444444444444DO, 

coMm9(+16 VZEIA, VZETAP 

+ -7853981 635Do/ 

+ 90371 33487654321 DO, -0379930591 278OoD0, 
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a 

e 

e 

0 

a 

a 

0 

0 

3 

5 
4 

C 
C 

15 

rF(ABsz.EQ.0) Go +o 3. 
IF(A€?S(DIMAG(Z)).LE.l .D-12.AND.DREAL(Z).U.O.D0) GO TO 5 
ARGZ=ATAXZ ( DIMAG( Z) , DREAL( Z )  ) 
GOT04 
ARGZ=O.DO I 

GOT04 - 
ARGZ=~. 141 5926535898b 
CONTINUE - 
IF(ABSZ.GT.6.DO) GO TO 10 
ASCENDING- . 
EQS. 10.4.2,10.'4.3 c o m m  .. 
Z3=Zw3 
mm=1 .Do 
FP"=Z*Z/2. DO 
GTERM=Z 
GP!J!ERM=l.DO . 
GLIM.=l D-l3*ABSZ 
F = d  .c' 

FP=FPTERM 
WTERM 
G P = G r n  

Do 1 I=l,KKKT 
I3=3*I 
FTElN=FTERM*Z3/( (13-1 .DO)*I3) 
FPTWM=FPT~*Z~/(  I3* ( 1 3 2  DO) ) 
GTERM=GTERM*Z3/(13*(13+1 .DO) ) 
GP!PElM=GFTERM%3/ ( ( 13-2 DO) *I3 ) 
F=F+FTERM 
FP=FP+FFTERM 
w!rERM 
GP=GP+GPTWM 
IF(AES(GTERM).~.GLIM) GO TO 2 

KKKT=lOO. ! ADJUST KKKT TO INSURE CONVERGENCE IF NECESSARY 
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0 

e 

e 

e 

0 

1 

m 
2 

C 
10 

C 
C 
C 

11 

C 
C 
C 
C 

20 

CONTINUE 

FoRMAT(/’ 2=’2E14.5,’ E R O R  IN CGBAIR, NONCOWGENCEl) 
A I S 1  *F-C2% 
AIP=Cl *FP-C2+GP 

PRINT 6o00, z 

BI=1*732050soaDo+(Cl*F+c2+G) 
BIP=1*732050808D0+( C1 *FP+c2+GP) 
GOT09999 
AsyMpToTIC EXPANSIONS FOR /Z/ LARGE 
SI@J=l .Do 
SUMl=O.DO 
m=O.Do 
suM3=o.Do 
SUMM.Do I 

IF(AES(ARGZ).GE:PI) do TO a, 
/ARG(Z)/ LE PI/3 ’ ). 
El2S. 10.4.59, 10.4.61, 10.4.63, 10.4.66 

ZETASZEIA(ABSZ,ARGZ) ’ 
Do 11 I=1,12 

i 
C - .  

PIBY34 1 41 5926Do/3. Ix) 8‘ 

. ? , 

K=I-1 
ZN!AP=ZEI!A”K 
SUM1 -1 +SIGNT (I ) / Z ~ A P  
SUW=SUM2+SI~*D( I ) /ZETAP 

SUM4=SUM4+D ( I ) /ZETA? 
SIGN=SIGN 
Z1 4=ABsZw. 25Do+DcMPiX (COS (ARGZ/4. DO) , SIN (ARGZ/4. DO) ) 
FACT1 = W M P  ( :ZETA) / ( PIRT+Z 1 4 ) 
FACTZ=. WEXP(-ZETA)*Z14/PIRT 
AI=FACTl +SUM1 
AIP=-FACT2wSUM2 
FACT1 =EXP(ZETA)/(PlRT+Z14) 
FACT2=MP( ZE;TA)*Z14/PIRT 
BI=FAC 1 +%lJM3 

Go To 9999 
/ARG( 2) / GT PI/3 NOTE CHANGE ABOVE 
EQS. 10.4.60, 10.4.62, 10.4.64, 10.4.67 

m=suKw ( 1 1 / z m p  * 

BIP=FA $ T2-4 

CONTINUE 
ARGZ=ATAN2(-DIMAG(Z), -DREAL(Z) ) 

VZEA=l .DO/ZE;TA 
mL=lO 

ZETA=CZETA ( ABSZ , ARGZ ) 

Do 21 I=l,IlTJI 
K2=(1-1)*2 
J=K2+1 

VZEI!AP=VZEJ!Aw+K2 
SUM1 =SUM1 +SIGN%( J ) *VZE2AP 
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a SUM~=SUM~+( SIGNWC( J+I )*VZETAP+VZETA) 
SUM3=SUM3+ ( SIGN*D (J *VZE!4!AP 

e 

e 

0 

21 

9999 

C 
C 

SUM4=SUM4+( SIGN*D( J+l )*VZETAPVZEfA) 
SIGN=SIGN 

.. 
FACT2=214/PIRT 
SN=SIN( 2~rA+P14) 
CSSCXS (ZlEA+PI4) 
AI=FACTl *( SN+suMl -cS+suM2) 
AIP=-FACT2*( C S W M 3 + S N ~ 4 )  
BI=FLCTI *( cswi +SN+SUM~) 
BIP=FACT2*( SN.svyn-CS"l4 ) 
RETURN 

t 

C REGIN OF FUNCTIONS e ABpvE 
C 
C 

FUNCTION CZETA (.BSZ, k?GZ ) 
IMPLICIT DOUBLE PRZISION 
COMPLEX*16 CZETA I 

ARG=ARGZ*I .5DO 

\. ' 

(A-H, 0-2) 

CZEI!A=(ABSZGl .5DO)*DCMPLX(CCQ(ARG) ,SIN(ARG))*.66666666666667Do 
RETUEW 

C 
C OFTHE'aPUNCTXN. 

GZAZ;Ll C-TES AIL !DIE PARTIAL DERIVATIVES * 
Y 

IMPLICIT DOEBB 'PREISION(A-H,&Z) 
COWLEX "1 6 BETA,GZ,GZZ, G,GB,GBB, SQRTl ,EN 
COMMON /CDNSTANTl /SPEED, OMEGA 
COMMON /CONSTANT2/ALF"A, DTOT 

A=l .+ALPHA*Z+IyTOT 
aRAN=oMEXtA/SPI33D+sQRT ( ( A-DTOT ) /A ) 
IF (DREAL(G) .LE. .O.AM).DIMAG(G) .GE.O. ) !MEN 

CALL GALL(Z,BETA,G) 

SI=-1 . 
SI=1. 

EISE 

ENDIF 
GZ=SI*2. *ALPHA+sW 1 (ETA, 2 ) / (3 .  WDSQRT (G*A) ) 
C=2 *ALPHA++3 DO*DTO!L'/( 9"AWZ DO) 
GZZ=C/( GZUt)- 5%ZH2. DO/G 
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0 

e 

e 

0 

e 

0 

0 

a 

e 

T= (3 +OMEGA/ ( 2 *ALPHA+sPEED) ) **( 2. DO/3. DO) 
EV=T+G 
muRN 
END 

C 
C 
C 
C 

SUBROUTINE ~m ( z , B ~ A ,  G) 
C-- 

CaMpI+M *16 G,REM,G32 
COMMON /CONSTANT 1 /SF'EED; OMEGA 
COMMON /CONSTANT2/ALPEA;DTrrOT ,. , 
CALL G32AI;L(Z,BE!A&32)- 
=DE@( 2 /3 +cDf)oG( G32) ) 

END 
FuimJRN 'e ; 

C 
c 
C 
C 

I 

SUBROUTINE &(Z,~',Hl ) 
c---- * 

* 
* 

c 
C HANKEL FUNCTIONS BOM AIRY FUNCTIONS. NOT THE 
C DEFWATIVES AS HAIX DOES. 
C*"HMW" 

H A I L 2  USES SUBROUTINE CGBAIR To c m T E  1/3 omm 

COMPLEX*16 2 ,AI ,BI, AIP,BIP,K,KS,Hl ,H2,H11 ,B1 
CoMm;M*16 ARG,CI 
COMPLEX*16 BETA 

PI= 3&1592654DO 
AFKk 
K= (1 2.DO)++( 1 .DO/6.DO)+cDMp(ARG) 
Ks= DCONJG(K) 

H1= K*(AI-CI*BI) 
H2= KS*(AI+CI*BI) 
muRN 
m 

CI= DcMpIX(o.DQ, 1 .Do) 
PIXCb. DO, -PI/6 DO) 

CALL CGBAIR (-2, AI, BI , AIP, BIP) 

C 
C 
C 
C 

SUBROUTINE DAFBZ(F) 
c ) H C + + * + M M + + + + * * * + * ~ ~ * ~ ~ * + + * * ~ ~ + + ~ ~ * ~ * * * * * ~ ~ ~ * ~  

* 
* C 

c pREssuRF:LFvEL. 
SuBROuTINE TO ACCURATELY DO THE HANKEL TRANSFORM OF 'IIIE SOUND 
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0 

0 

a 

C 
C 

m 

NS IS A PARAMEl!lB REPRIBBITING ADDITION OF AN ANALYTICAL FUNCTION * 
To F(NP) I 

w 

C M  IS‘^ NUMBm OF TBMS USED TO APPROXIMATE F(m) TO INFINITY * 
C-- - IMPLICIT DOUBLE PRECISION ( A 4 , O - 2 )  

COb@lON /IN!PE/NS.ME.Nl 
C O M M m / A F B 2 I N / ~ , D W  

m=NI 

DEIK=DELEETA 
PI=3.1415926DO 

COMPIXX*I 6 F(NI ) , CF, CARG, SUM, m, CMPI , DI 
t 

CMPI=ImPLx(O.DQ, 1 .Do) 
.* 

C 
C 

SUBTRACT !CHI3 ANALYTICAL FUNCTION zF.Ns > ZERO 
ADJUSTING THE SUB!E?A@'fON MULTIPLIEt CF 

IF(Ns.m.0) GOT0 i l l  
CF=DnrmJr(O.rn,O.Do) 
IF (ALP.EQ.o.0) llIEN 
W-DFWM! (NP) /EFK.W 
C F e F ( 2 )  
ENDaIF I 

IF (ALP.NE.o.07 T" 

C SUBTRACT ANALYTICAL FWCTION IF NS>O 
Do lO,I=l,NP a . 
D~=DWIX(DFIIIAT(X-I ),(-ALP)) 

F( I )=F( I)-( 1 .DO-CDEXP ( CARG) ) 
CARkDFUIAT (I@] * (-Dl ) /Dl?LQAT (Np ) 

10 CONTINUE 
1 1  CONTINUE 

IF(ALP.EQ.O.0) F(l )=D~M~L~(O.DO,O.DO) 
FNP=F(NP) 
Do 12$1=2,W. 

F(I)=F(I)/(CDSQWI(D~ 1) 
D1 =DcMPIX( DFIDAT (1-1 ) , (-ALP) ) 

12 CONTINUE 
IF(ALF'.NE.oO.O) F(1 )=F(l )/CDSQRT( (-CMPI)*(ALP)) 

IF(ME.EC.1) GOT0 20 
Do 15,I=l,NP 

C ADD TWMS TO INFINITY IF ME>O 

D1 =ocMPLX(DFliDAT( 1-1 ) , (-ALP) ) 
CF=Dl /DFUIAT(NP) 
CAI& ZETA(NP,ME,CF,SUM) 
F( I)=F( I)+FNP+SUM 

15 CONTINUE 
20 CONTINUE 

C DOTHEFFl! 

C ADD ALTEEWATE TERMS TO GIVE NP/2 W I  TRANSFORMED 
CAJA FORK(NP,F,l) 
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e 

e 

0 

CF=DEIK*DF?,DAT (NP)*( CDSQRT ( 4 P I  ) ) /( 2. W P I  ) 
DO 25,1=2,NP/2 

A=DEXP (DmAT (1-1 ) *( ALP)*2 DWPI/DFIIDAT (NP) ) 
F( I)=A*F( I)+CMPI*F(NP-I+2)/A 
F( I 1 =F ( I ) w/mw ( D ~ A T  ( 1-1 1 1 

25 CONTINUE 

10 
20 

30 

40 

5O 

C 
C 
C 
C 

C ~ = C X ( J ) * S C .  . 

M=IX/2 

CX( J )=cx(~ )e 
cx(I>=cmP -: ' 

IF(J.LE.M) m 30 
J-J-M 
M=M/2 
IF(M.GE.I) GOTO x) 

ISTEP=2*L 
DO 50,M=l,L 
CARG=CMPI *PI *DBU ( SIGNI ) "DBLJ3 ( ( M-1 ) ) /DBm ( L) 
CW=CDEXP &ARG 

cx ( I j =ix ( I ) +CTrnP 
L=ISTEP 
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a 

a 

0 

SUBROUTINE ZGTA (NP ,M, A, SUM) 
C + + + + M H H c + + + + + + + M - - - -  

C SUBROUTINE TO ADD THE NEcmARY TFXMS M 
C 
C 

EXPRESS I"IBLE FUNCTION TO %FINI&. 
WILL USE DOUBLE HIECISION. 

C 
C INFINITY MINUS SOME CONSTANT WHICH IS 
C IND3PENDENT OF A. 
C l  

SUM=SUM OF 1/(NpA.5)*1/( (J+A)̂ .5) FUR J=l To 

a 
$ 

10 

e 

0 

IMPLICIT DOUBIiE €REISION (A-H,O-Z) 
Coa(IpI9E+16 A,SUM,D2 
D2=DCMPTZ (DFIDAT (M) , 0.00) 

SUM=2 Ixrc (DSQRT (DFU5A!i!<M) )-1 M>/CDSW (SUM) ) 

DO 10,J=l,M L 

CONTINUE .' 
SUM=SUM/DS@?T ( D ~ A T  (NP) ) 
l?ln!Um 
m 

z m=i .DO/(M+A) 
4.5%DSQRT(SvM)*(l .~*(l.0/12.&SUM+SUM/192.0)) 

SUM=SUM+l DO/CIBQp! (J+A) 
t 

d 

.. 
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e 

APPENDIX B - The Inversion Case Program 

The code for the lapse case follows. This code is extremely similar to the lapse 

case and the subroutine names and functions, variable names and hints are identical 

or at least very similar to those in the lapse case. 
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a 



e 

(3, 

* >  

C 
C 
C 
C 
C 
C 
C 
i 
C 
C 
C 
c 
C 
c 
C 
C 
c 
C 

c 
C 

C 
C 

a C 
L 
C 

L 

P R O G R A M  M A I M  

t 4 t * . + * t t t 4 + * 4 * 4 1 * t t t * * * * * 4 * 4 * ~ * 4 ~ 4 4 * * 4 * 4 * 4 ~ 4 ~ * * * ~ 4 4 4 4 4 4 * 4 * 4 ~ 4 4 4 4  

Main p r o s r a a :  w i l l  c a l l  t h o  r u l r o u t i n o r  t o t  4 
1 )  I n p u t  t h o  p r o g r a a  p r r a n o t o r s .  
2 )  F i n o  t h e  p o i n t s  i n  t h o  gaSt2  function mhoro -. 4 

r e g i o n  c h a n g e r  o c c u r .  
3 )  9 u i l d  t k e  m z t r i x  o f  valuor o b t a i n o d  by . a r c h i n g  

s l r s h t I y  a b o v e  t h e  r e a l  a x i s .  
4 )  P e r f o r m  t h o  F a n k e l  T r a n s f o r m  on t h o  88trir 

5 )  P r i n t  t h e  r e s u I t t .  

t 
4 

4 
~ . - - -  - - -  -_  _. 

t 
* 

+ 
1 

4 

4 _ _  o b t z i n e d  i n  s t e c  t h r o e .  

4 

. . * * t t * t * . * t 1 1 t t * . . * * * . * * t * . + * t * * * * * * * * 4 ~ 4 4 ~ 4 4 4 4 4 * * 4 4 4 4 * * * * 4 4 * * * 4  

P R I h T  * I ' S E T E R C S N S N G  . ? E G I G N  CHPNGE C O O R D I N A T E S '  
C A L L  R E G I O N ~ F I ~ D ~ A N G I R ~ ~ I R ? ~ ~  

P R I N T  * r ' B U I L 3 V G  C A T 2 I X '  

. _ .  C A L L  S U I L D H I T R I X  (DELBETAIHGHT)  

L 
C 

P R I N T  * r ' 9 C I N G ' H A N K E L  TRANSFORP. . -_-- a 
C A L L  WANKEL 

C 
C 
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ORIGINAL PAGE rs 
OF PO'-)?? OTJALITY 

C 
C 

C 

1 

a 

60C 
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ORIGINAI; PAGE rS 
OF POOR. nTTAI,ITY 

a 

C 
C 
C 
C 
C 
C 

C 
C 
C 

c 

a 

C 

C 
C 
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0 

0 

0 

0 

0 

iz 
C 
i 
C 
! 

? 

1 

1 
L 

! 
b 

3 

1 
! 

4 

t 
I 

5 

I 

L 
6 

I 

I 
7 

I 
! 

0 

ORIGINAI; PXGE IS 
OF m a  wALm 

RE;:CN 1 

R E C I C N  2 _._. ~ 

U b A R ( 1 )  = C C N S T  C h l - N Z  + HZ-NZ*R) * HZ-NS 
G 3 T S  10 

G a A R C I )  
G O T O  10 

G a A R < x )  
G O T O  10 

R E G I O N  4 
=-CChST, *  ( H l - F I S I R  * HZ-NS)  H l - N L  

* R E G I O N  5 * 
= - C C k S T  ( F l - N Z / R  + H2,NZ) 4 H?,NS 

** R E G I O N  6 * *  
= CCNST ( H l - N S  + (CR-E)/RY+E H Z - N f l  HZ-NZ 

. . . .  . 
. . . . . . . - .. . . . . . -. . .. - 
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rn 

e 

rn 

e 

e 

rn 

0 

C 
C 

+ 
.. . 

L T O T  F O O / S  
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C 

0 

0 

0 

a 

0 

102 

0 



0 

a 

0 

a 

a 

0 

a 

ORIGINAL PAGE IS 
OF POOR QUALITY 

r 
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ORIGINAL PAGE IS 
DE POoR QUALIlv 

a 

0 

0 

'Q 
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C 
1 G  

0 

C 
C 
C 

e 

e 

e 

11 

C 
i 
i 
C 

Z C  e 

il 



a 

a 

DRIGXNAL PA@ IS 
- .  OF POOR QUALITY C 

9999 cont inuo 

END 
RETURN 

~ _ -  _ #  - -- - _. _ _ _  - _ > _  . C 
C /' 

C B E G I N  O F  FUNCTIONS USEC A B O V E  
C 
C 

... _ -  - _  .. - - _ .  

FbNCTION CLETA(AB~ZIARGZ) 
I M P L I C I T  COU5LE PRECISION CA-HIO-ZI 
CCHPLEX*l6 C Z E T A  
A R G  = AR'JZ*l.SJC 
CZETA = ( P e S Z + * l . f C G ) + C C ~ P L X ( C O S ( d 9 t ) r S I N ( A R G ) l ~ . 6 6 6 6 6 6 6 6 ~ 6 6 6 6 ~ ~  
R E T U A N  
ikJ 

C 
C 
C EhC OF FdhCTICNS L S E O  A B O V E .  
C 
c 
c 

CALL C ~ S A I R ( - ~ I A I I S ~ I A X P I @ I P I I R € G )  
n l  = K + ( A Z - C I * S I )  
n2 = K S * < A I * C I + E I J  
17ETlrliN 
EhO 

C 
C 
C 
C 

/ 

- . .- 

SU5i lObTINE HAYKEL 
c *t4.+44tst+4t.*4ttt*4*444*444444*4444444b*4444444444+4*4444*4*44*4444 
C SUBSiOliTINE T O  ACCLRATELY C C  THE dANKEL TRANSFORM C f  mE SOUND 4 
C P R E S S U R E  LEVEL. 
C F(NP)=GaAR(NP) MbST E €  SAMPLE0 AT NP POINTS WITH K = ( N - l r A L P )  4 

c A L P  R E P R E S E N T S  TCE DISTANCE ASUVE THE REIL axrs  THE FUNCTION WILL 4 - 
C a E  INTEGRATED. 4 

C NS IS A PARAMETER REFRESENTINC A O O I T I O N  OF AM AMALTTICAL PUNCTIOY 4 

C T O  F ( N P F - - - - -  - -  
C 4 * * 4 4 * * 4 4 . t * 4 + 4 4 4 * 4 ~ 4 * 4 ~ e 4 4 4 4 * ~ e 4 e ~ 4 4 4 4 4 ~ ~ ~ 4 4 4 4 4 ~ 4 * ~ ~ e 4 4 ~ 4 * 4 4 4 4 4 4 ~ 4 4 4 ~  

4 
___- --__.-- .-_. __- -I- - --_- -_ _ _  __ 

c H IS THE LUMBER CF ~ E R R S  usca TO AIPRDXINATC rcnr, TO INFINITI e 

IMPLICIT DOUBLC PRECISIOR ta-nco-n- 
COMMON l C O N S T i  C C P I r P x  
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0 

0 

a 

a 

e 

e 

e 

i 

a 
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0 

e 

L 

C 
C 
C 

C 
c 
c 
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5 s  

c 

1 

C 
C 
C 

C 

C 
r 
b 

0 

& 
1 

C 
C 
C 

C 
C 
C 
C 
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I R E G I O N  1 
.LE. R C Z ) )  IREGION = 6 
.LE. R f 2 I )  I R E G I O N  1 3 
.LE. R Z Z ) )  I R E G I O N  = 4 

IREGION = 2 

.LE. R t 2 ) )  XREGION = 8 

.LE. 3 C 2 ) )  IREGION = 7 

.LE. R S 2 ) )  IREGION 5 
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